INTERNATIONAL STANDARD

First edition 2015-10-01

Safety of toys —

Part 7: **Requirements and test methods for finger paints**

Sécurité des jouets —

Partie 7: Exigences et méthodes d'essai pour les peintures digitales

Reference number ISO 8124-7:2015(E)

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Licensed to: Tsitsulina, Antonina Mrs Downloaded: 2020-12-21 Single user licence only, copying and networking prohibited © ISO 2015 – All rights reserved

Contents

Page

Forew			iv					
Intro	ductio	1	v					
1	Scope	9	1					
2	Norm	ative references	1					
3	Term	s and definitions						
4	Dogu	iromonte	2					
Ŧ	4.1	41 General						
	4.2	Colourants	2					
	4.3	Preservatives						
	4.4	Migration of certain elements						
	4.5	Limits for impurities						
		4.5.1 Limits for primary aromatic amines	3					
		4.5.2 Limits for other impurities	4					
	4.6	Taste and smell	5					
	4.7	pH value						
	4.0 1 9	N-Nitrosamines	ס ק					
	4.10	Container						
Annex	x A (inf	ormative) Rationale	6					
Annex	x B (inf	ormative) Non exhaustive list of colourants that are commonly used in						
	finge	r paints and need to be in compliance with both the general and specific						
	purit	y requirements	9					
Annex	x C (noi of fre	rmative) Method for the detection of certain azo colourants and determination	13					
	D (20					
Annex	allow	rmative) List of preservatives allowed for use in finger paints and maximum red concentrations						
Annex	x E (no	rmative) Method for the determination of hexachlorobenzene, polychlorinated	22					
	Dipite							
Annex	KF (inf	ormative) ingredients used in the manufacture of finger paints	49					
Annez	x G (inf	ormative) Labelling guidelines and manufacturer's markings	51					
Biblic	graph	y	53					

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 181, Safety of toys.

ISO 8124 consists of the following parts, under the general title *Safety of toys*:

- Part 1: Safety aspects related to mechanical and physical properties
- Part 2: Flammability
- Part 3: Migration of certain elements
- Part 4: Swings, slides and similar activity toys for indoor and outdoor family domestic use
- Part 5: Determination of total concentration of certain elements of toys
- Part 6: Certain phthalate esters in toys and children's products
- Part 7: Requirements and test methods for finger paints
- Part 8: Age determination guidelines

Introduction

This part of ISO 8124 contains requirements which are intended to reduce the risks to children when finger paints are used as intended or in a foreseeable way, bearing in mind the behaviour of children. In particular it is recognized that finger paints present different risks when compared to other toys because of their intended use which requires application to the hands and fingers of young children. It cannot be ruled out that some of the paint material will be ingested or flicked into the eye or that prolonged contact with the skin will occur. Therefore, in order to address the particular risks associated with finger paints, this part of ISO 8124 contains requirements relating to the ingredients that may be used in the manufacture of finger paints and limitations on certain impurities that may be found in these ingredients. It also sets out certain requirements on the packaging and labelling of finger paints.

Chemical Abstract Service Registry Numbers (CAS) or Colour Index Numbers given in the Tables are provided for information purposes only.

<u>Annex A</u> provides rationale for the requirements.

Licensed to: Tsitsulina, Antonina Mrs Downloaded: 2020-12-21 Single user licence only, copying and networking prohibited

Safety of toys —

Part 7: Requirements and test methods for finger paints

1 Scope

This part of ISO 8124 specifies requirements for the substances and materials used in finger paints. It is applicable to finger paints only.

It is not applicable to paints intended to be applied to the face or body e.g. face paints.

Additional requirements are specified for markings, labelling and containers.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 787-9, General methods of test for pigments and extenders — Part 9: Determination of pH value of an aqueous suspension

ISO 8124-3:2010, Safety of toys — Part 3: Migration of certain elements

3 Terms and definitions

For the purposes of this document the following definitions apply.

3.1

finger paint

aqueous semi-solid or liquid, coloured mixture specially designed for children to apply directly to suitable surfaces with the fingers and hands

Note 1 to entry: Finger paint supplied in powder form is mixed with water according to the manufacturer's instructions before being considered in relation to this part of ISO 8124.

3.2

colourant pigment or dvestuff

Note 1 to entry: For definitions of pigment and dyestuff see <u>A.2</u>.

3.3

extender

material in granular or powder form, insoluble in the medium and used to modify or influence certain physical properties

Note 1 to entry: [SOURCE: ISO 4618:2014, definition 2.102, modified — Note 1 to entry deleted]

3.4 humectant substance that delays the drying process

3.5

binding agent

water-soluble or miscible, non-volatile component that binds the paint to the surface to which it has been applied

3.6

preservative

substance that prevents the growth of undesirable micro-organisms

3.7

surfactant

surface active substance that reduces the surface tension of the solution

Note 1 to entry: It can be used to make components miscible.

3.8

embittering agent

substance that gives the product a bitter taste

4 Requirements

4.1 General

Finger paints supplied in powder form shall be assessed against this part of ISO 8124 when mixed with water in accordance with the manufacturer's instructions.

When assessed according to the rules set out in the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS), a finger paint shall not be classified with any of the following health hazards:

- acute toxicity (hazard class 3.1);
- skin corrosion/irritation (hazard class 3.2);
- serious eye damage/eye irritation (hazard class 3.3);
- respiratory or skin sensitization (hazard class 3.4);
- germ cell mutagenicity (hazard class 3.5);
- carcinogenicity (hazard class 3.6);
- reproductive toxicity adverse effects on sexual function and fertility or on development (hazard class 3.7);
- specific target organ toxicity single exposure effects other than narcotic effects (hazard class 3.8);
- specific target organ toxicity repeated exposure (hazard class 3.9);
- aspiration hazard (hazard class 3.10).

4.2 Colourants

See <u>A.2</u>.

4.2.1 Colourants used in finger paint shall not have any of the health hazard classifications set out in <u>4.1</u> (hazard class 3.1 to 3.10).

NOTE <u>Annex B</u> provides a list of commonly used colorants that have been found to meet the requirements of <u>4.2</u>, providing they meet the purity requirements specified. These fall into one or more of the following categories: Colourants permitted for use in food and/or cosmetics and other pigments which meet the general requirements of <u>4.1</u>.

4.2.2 Finger paints shall not contain azo colourants that by cleavage of one or more azo groups can produce the primary aromatic amines listed in <u>Tables 1</u> and <u>2</u> when tested in accordance with the test method specified in <u>Annex C</u>.

4.3 Preservatives

See <u>A.3</u>.

Finger paints shall be preserved using only the preservatives listed in <u>Annex D</u>. The maximum concentrations of preservatives shall not exceed the limits in column 4 of <u>Table D.1</u> in <u>Annex D</u>.

Methods for the determination of certain preservatives are set out in the EU Cosmetics Legislation, (see Bibliography) and should be used when evaluating the maximum concentrations specified in the column "maximum allowed concentration" of <u>Table D.1</u>. Alternative methods that provide an equivalent detection limit may also be used.

4.4 Migration of certain elements

See <u>A.4</u>.

The concentration of elements shall not exceed the maximum limit values for finger paint specified in ISO 8124-3:2010, Table 1.

4.5 Limits for impurities

See <u>A.5</u>.

4.5.1 Limits for primary aromatic amines

4.5.1.1 The primary aromatic amines listed in <u>Table 1</u> shall not be detectable when tested in accordance with the test method in <u>Annex C</u>.

Primary aromatic amines	CAS Number
Benzidine	92-87-5
2-Naphthylamine	91-59-8
4-Chloro-2-methylaniline (4-Chloro- <i>o</i> -toluidine)	95-69-2
4-Aminobiphenyl	92-67-1

Table 1 — Primary aromatic amines

4.5.1.2 Finger paint shall not contain carcinogenic primary aromatic amines (see <u>Table 2</u> for a non-exhaustive list of relevant substances) in a total amount exceeding 20 mg/kg, with no individual primary aromatic amine exceeding 10 mg/kg, when tested in accordance with <u>Annex C</u>. The limitation does not apply to aromatic aminocarboxylic acids or aminosulfonic acids.

Table 2 — Other primary aromatic amines (non-exhaustive list)

Primary aromatic amine	CAS Number	
o-Aminoazotoluene (4-o-Tolyazo-o-toluidine)	97-56-3	
^a For certain pigments limit values for 3,3'-Dichlorobenzidine are given <u>Annex B</u> , <u>Table B.1</u> .		
Downloaded: 2020-12-21		

Primary aromatic amine	CAS Number					
2-Amino-4-nitrotoluene (5-Nitro- <i>o</i> -toluidine)	99-55-8					
4-Chloroaniline	106-47-8					
2,4-Diaminoanisole	615-05-4					
4,4'-Diaminodiphenylmethane (4,4'-Methylenedianiline)	101–77–9					
3,3'-Dichlorobenzidine ^a	91-94-1					
3,3'-Dimethoxybenzidine	119-90-4					
3,3'-Dimethylbenzidine	119-93-7					
3,3'-Dimethyl-4,4'-diaminodiphenylmethane (4,4'-Methylenedi-o-toluidine)	838-88-0					
<i>p</i> -Cresidine (6-Methoxy-m-toluidine)	120-71-8					
2, 2'- Dichloro-4, 4'- methylenedianiline (4,4'-Methylene-bis-2-chloroaniline)	101-14-4					
4,4'-Oxydianiline	101-80-4					
4,4'-Thiodianiline	139-65-1					
<i>o-</i> Toluidine	95-53-4					
2,4-Xylidine	95-68-1					
2,6-Xylidine	87-62-7					
4-Amino-3-fluorophenol	399-95-1					
6-Amino-2-ethoxynaphthalene	not available					
2-Methoxyaniline (<i>o</i> -Anisidine)	90-04-0					
4-Aminoazobenzene	60-09-3					
4-Methyl- <i>m</i> -phenylenediamine (Toluene-2,4-diamine)	95-80-7					
2,4,5-Trimethylaniline	137–17–7					
Aniline	62-53-3					
^a For certain pigments limit values for 3,3'-Dichlorobenzidine are given <u>Annex B</u> , <u>Table B.1</u> .						

Table 2 (continued)

4.5.2 Limits for other impurities

See <u>A.5</u>.

Finger paints shall not contain the impurities specified in <u>Table 3</u>, column 1 above the limits specified in column 2 when colourants specified in column 3 are used, when tested in accordance with <u>Annex E</u>.

Table 3 — Impurities in finger paints

Values in	milligrams	per	kilogram	of finger	paint
	0		0	0	1

Impurity	Limit	Finger paints of concern
Polychlorinated biphenyls	< 2	Finger paints containing chlorinated colourants or colourants manufac- tured in chlorinated solvents
Hexachlorobenzene (CAS No. 118–74–1)	< 5	Finger paints containing chlorinated colourants or colourants manufac- tured in chlorinated solvents
Benzo (α) pyrene (CAS No. 50–32–8)	< 0,05	Only for finger paints containing carbon black

4.6 Taste and smell

See <u>A.7</u>.

Finger paints shall not be sweetened, flavoured or fragranced.

An embittering agent in accordance with <u>Table 4</u> shall be added in order to discourage and minimize the ingestion of paint.

Embittering agent	CAS Number
Naringin	CAS 10236-47-2
Denatonium benzoate	CAS 3734-33-6

The bitterness should be detectable by taste when the finger paint is diluted with water in a ratio of 1:100. The following levels have been found suitable: naringin 1 %; denatonium benzoate 0,0004 % (4 mg/kg). The relative bitterness of these substances is approximately 1:3 000 (naringin : denatonium benzoate).

The embittering agent and its concentration should be such that it provides a bitter taste during the expected lifetime of the finger paint.

4.7 pH value

See <u>A.8</u>.

The pH value of the finger paint shall be between 4,0 and 10,0 when tested in accordance with ISO 787-9.

4.8 Binding agents, extenders, humectants and surfactants

Finger paints shall only use binding agents, extenders, humectants and surfactants which are not classified with any of the health hazards set out in in <u>4.1</u> (hazards class 3.1 to 3.10).

NOTE See <u>Annex F</u> for a list of compounds known to be commonly used in finger paints.

4.9 N-Nitrosamines

See <u>A.9</u>.

Finger paints shall not contain more than 0,02 mg/kg of N-nitrosodiethanolamine (NDELA), CAS No.:1116-54-7.

NOTE One suitable and validated test method is detailed in EN 71–12:2013, 7.2.1 and Clause 8. Other test methods may be used provided they are validated for finger paints.

4.10 Container

See <u>A.10</u>.

Containers used for finger paints shall not have a design that is likely to be mistaken by children with containers of foodstuffs or drinks.

Manufacturers should take into consideration the material(s), shape, volume, colours, labelling, other packaging and the means of access to the contents, when assessing similarity with containers of foodstuff or drinks.

Annex A (informative)

Rationale

A.1 Finger paints

In addition to water, *finger paints* essentially consist of colourants, binders, preservatives and embittering agents and may additionally contain extenders, humectants and surfactants. *Finger paints* may be coloured by using colouring substances or mixtures containing colouring and other ingredients which are incorporated into a finger paint to impart colour to the finger paint.

A.2 Colourants

See <u>4.2</u>.

<u>Annex B</u> contains a list of colourants which are suitable for finger paints subject to them meeting certain purity requirements. It includes colourants specific to finger paints, food colourants and cosmetic colourants.

More detailed requirements on aromatic amines are included in order to exclude risks which may derive from impurities in colourants.

Dyes are intensely coloured or fluorescent organic substances only, which impart colour to a substrate by selective absorption of light. They are soluble and/or go through an application process which, at least temporarily, destroys any crystal structure by absorption, solution, and mechanical retention, or by ionic or covalent chemical bonds.

Pigments are coloured, black, white or fluorescent particulate organic or inorganic solids which usually are insoluble in, and essentially physically and chemically unaffected by, the vehicle or substrate in which they are incorporated. They alter appearance by selective absorption and/or by scattering of light. Pigments are usually dispersed in vehicles or substrates for application, as for instance in the manufacture or inks, paints, plastics or other polymeric materials. Pigments retain a crystal or particulate structure throughout the coloration process.

A.3 Preservatives

See <u>4.3</u>.

The use of appropriate preservatives in water-based systems like finger paints is necessary in order to provide protection against the growth of bacteria, fungi and yeasts and maintain a hygienic compound.

Preservatives allowed for use in finger paints are listed in <u>Annex D</u>. The following properties were taken into consideration when drafting this list: high efficacy with respect to micro-organisms accompanied by suitable toxicological performance (e.g. low human toxicity, low volatility, low odour), suitable technical performance (e.g. solubility in water-based systems, stability against other ingredients, stability against chemical or physical influences) and suitable environmental performance [e.g. low adsorbable organic halogens (AOX), low persistence]. The list includes, for example, preservatives that are allowed for cosmetic use or for food use.

A.4 Elements

See <u>4.4</u>.

The limit values and test methods for the migration of certain elements in finger paints are specified in ISO 8124-3, Table 1, row 3.

A.5 Limits for primary aromatic amines

See <u>4.5.1.1</u> and <u>4.5.1.2</u>.

Table 1 lists the four primary aromatic amines which shall not be determinable in finger paints at the limit of quantification (LOQ) using the method described in <u>Annex C</u> using GC-MS as the detection technique. Table 2 lists 24 primary aromatic amines which were taken from Table 2 of EN 71-7:2014 entitled "Other carcinogenic primary aromatic amines (non-exhaustive list)". Therefore, the listing of primary aromatic amines in Table 2 of this part of ISO 8124 has been described as a non-exhaustive list and does not preclude other primary aromatic amines from being analysed. The information provided in Chromatography (C.6.5) and Precision (C.8) includes the four primary aromatic amines listed in Table 1, and 18 primary aromatic amines from Table 2. The inclusion of 18 rather than all 23 primary aromatic amines in Table 2 reflects the difficulty in obtaining the suitable commercial standards at the time of writing this part of ISO 8124. The information in C.5 and C.8 should provide the competent analyst with indicative information in the determination of other primary aromatic amines where/when calibration standards are available. The limitation for primary aromatic amines does not apply to aromatic aminocarboxylic acids or aminosulfonic acids because they are considered to be harmless.

A.6 Limit for benzo(α)pyrene

See <u>4.5.2</u>.

Benzo(α)pyrene in finger paints is limited to the currently technically achievable analytical limit of quantitation (LOQ) of 0,02 mg/kg.

A.7 Taste and smell

See <u>4.6</u>.

The addition of sweeteners, flavourings and fragrances to a finger paint may be determined by an assessment of the individual ingredients in the formulation of the finger paint.

The requirement to add an embittering agent to finger paints is intended to minimize potential oral ingestion by young children who may deliberately or accidentally put some of the finger paint in their mouth.

It should be noted that products with added embittering agents show remarkable bitterness, which may remain for a while after putting it into the mouth.

Experience has shown that the bitterness in finger paint will last for the product's lifetime, if one of the two embittering agents in <u>Table 4</u> is used in diluted finger paint as given in the Note in <u>4.6</u>.

A.8 pH value

See <u>4.7</u>.

The use of calcium carbonate may raise the pH value as a result of more dissociation by dilution with water in accordance with ISO 787-9 up to pH 10.

Some types of formulations containing calcium carbonate show pH values higher than 10 because the dilution of the finger paint is made with distilled water. This may also be found for small amounts of calcium carbonate in finger paint. Such a high increase as an analytical artefact does not happen when tap water is used to dilute the finger paint.

A.9 N-Nitrosamines

See <u>4.9</u>.

To avoid the possible formation of N-nitrosamines avoid using formulations that combine diethanolamine andtriethanolamine (which is known to be often contaminated with diethanolamine or which can be decomposed to diethanolamine) with possible sources of nitrite that may be present in certain preservatives (e.g. bronopol) and other raw materials.

Work undertaken during the development of EN 71-12:2013, showed that the only N-nitrosamine of relevance for finger paints is N-nitrosodiethanolamine (NDELA), CAS No.:1116-54-7. Consequently this part of ISO 8124 sets a limitation on NDELA only. EN 71-12:2013 mentions other N-nitrosamines because this aligns with the EU toy safety directive but other N-nitrosamines are not known to occur in finger paints.

EN 71-12:2013 contains a validated test method for the determinations of NDELA in finger paints but other test methods may be used provided they are validated for determination of NDELA in a typical finger paint matrix.

A.10 Containers

See <u>4.10</u>.

This requirement is intended to minimize the potential for a child to mistake finger paint for a foodstuff or a drink. The requirement is one of a series of precautionary measures (e.g. embittering agents, no flavour, no sweetening, no fragrance, warning to parents to supervise) intended to discourage the ingestion of finger paints by typical users (e.g. two years and above).

A.11 Labelling guidelines

See <u>Annex G</u>.

Young children have a propensity for exploring objects orally. The warning phrase recognizes the fact that children under three years of age may be tempted to taste or eat the finger paint and this is something that the supervisor would be expected to discourage or prevent. Even though finger paints that are in conformity with this part of ISO 8124 may be considered to present a minimal risk, ingestion of repeated amounts of finger paint is not recommended.

Annex B (informative)

Non exhaustive list of colourants that are commonly used in finger paints and need to be in compliance with both the general and specific purity requirements

Table B.1 lists organic colourants commonly used in finger paints.

No.	Colour	CI Generic Name ^a	CI Constitution Number	CAS Number	Limitations, requirements and information
1	Yellow	Pigment Yellow 1	11680	2512-29-0	See ^b .
					Check purity criteria for amine limits and that excess coupling component ^d is less than 1 000 ppm (parts per million).
2		Pigment Yellow 3	11710	6486-23-3	See ^b .
					Check purity criteria for amine limits and that excess coupling component ^d is less than 1 000 ppm.
3		Pigment Yellow 12	21090	6358-85-6	3,3'-Dichlorobenzidine \leq 5 mg/kg: see <u>C.1</u> detection limit of the method.
4		Pigment Yellow 13	21100	5102-83-0	3,3'-Dichlorobenzidine \leq 5 mg/kg: see <u>C.1</u> detection limit of the method.
5		Pigment Yellow 14	21095	5468-75-7	3,3'-Dichlorobenzidine ≤ 5 mg/kg: see <u>C.1</u> detection limit of the method.
6	_	Pigment Yellow 17	21105	4531-49-1	3,3'-Dichlorobenzidine ≤ 5 mg/kg: see C.1 detection limit of the method.
7		Pigment Yellow 74	11741	6358-31-2	Check purity criteria for amine limits and that excess coupling component ^d is less than 1 000 ppm.
8		Pigment Yellow 138	56300	30125-47-4	
9		Pigment Yellow 139	56298	36888-99-0	
10		Pigment Yellow 151	13980	31837-42-0	
11	Yellow	Pigment Yellow 154	11781	68134-22-5	Check purity criteria for amine limits and that excess coupling component ^d is less than 1 000 ppm.
12		Pigment Yellow 155	200310	68516-73-4	
13		Pigment Yellow 185	56290	76199-85-4	
14		Natural Yellow 3	75300	458-37-7	Food grade, for example see current European legislation (2008/128/EC), E 100
15		Natural Yellow 6	75100	8 9 3 8 2 - 8 8 - 7 27876-94-4	

Table B.1 — Organic colourants which are commonly used in finger paints

^a The Colour Index is published by The Society of Dyers and Colourists, PO Box 244, Perkin House 82 Grattan Road, Bradford, West Yorkshire BD1 2JB, United Kingdom, <u>www.colour-index.org</u>. Colourants are classified using both their CI generic name and their constitution number. These relate only to the "essential colourant" as defined by the Colour Index.

^b This substance is restricted in Regulation (EC) No 1223/2009^[8] as follows: "Not to be used in eye products" or "Not to be used in products applied on mucous membranes", as applicable.

c This substance is restricted in Regulation (EC) No 1223/2009^[8] as follows: "Rinse-off products".

d Azo colourants are typically formed by a reaction sequence of diazotization of a primary aromatic amine which is referred to as the diazo component, followed by reaction (known as "coupling") with a compound having active methylene groups referred to as a coupling component.

No.	Colour	CI Generic Name ^a	CI Constitution Number	CAS Number	Limitations, requirements and information
16		Natural Yellow 26	75130	7235-40-8	Food grade, for example see current European Directive (2008/128/EC), E 160 a
17		Natural Yellow 27	75135	79-75-4	Food grade, for example see current European
				3763-55-1	Directive (2008/128/EC), E 161 d
18	Orange	Pigment Orange 13	21110	3520-72-7	Check purity criteria for amine limits and coupling component ^d limits
					Combinations with Pigment Black
					7 shall be checked for release of
					3,3'dichlorobenzene
					3,3'-dichlorobenzidine ≤ 5 mg/kg: see <u>C.1</u> Detection limit of the method
19	Orange	Pigment Orange 34	21115	15793-73-4	Check purity criteria for amine limits and coupling component ^d limits
					Combinations with Pigment Black
					7 shall be checked for release of
					3,3' dichlorobenzene
					3,3'-dichlorobenzidine ≤ 5 mg/kg: see <u>C.1</u> Detection limit of the method
20		Pigment Orange 43	71105	4424-06-0	See ^b .
21		Pigment Orange 71	561200	86432-50-8	
22		Pigment Orange 73	56117	84632-59-7	
23		Natural Orange 4	75120	8015-67-6	Food grade, for example see current European Directive (2008/128/EC), E 160 b
24	Red	Pigment Red 48:2	15865:2	7023-61-2	
25		Pigment Red 48:3	15865:3	15782-05-5	
26		Pigment Red 57:2	15850:2	17852-98-1	
27		Pigment Red 57:1	15850:1	5281-04-9	
28		Pigment Red 63:1	15880:1	6417-83-0	
29		Pigment Red 68	15525	5850-80-6	
30		Pigment Red 83	58000:1	104074-25-1	
31		Pigment Red 122	73915	980-26-7	See ^c .
32		Pigment Red 181	73360	2379-74-0	
33		Pigment Red 214	200660	82643-43-4	
34		Pigment Red 242	20067	52238-92-3	
35		Pigment Red 254	56110	84632-65-5	
36		Pigment Red 255	561050	54660-00-3	
37		Pigment Red 264	561300	88949-33-1	
38		Pigment Red 272	561150	350249-32-0	

 Table B.1 (continued)

^a The Colour Index is published by The Society of Dyers and Colourists, PO Box 244, Perkin House 82 Grattan Road, Bradford, West Yorkshire BD1 2JB, United Kingdom, <u>www.colour-index.org</u>. Colourants are classified using both their CI generic name and their constitution number. These relate only to the "essential colourant" as defined by the Colour Index.

^b This substance is restricted in Regulation (EC) No 1223/2009^[8] as follows: "Not to be used in eye products" or "Not to be used in products applied on mucous membranes", as applicable.

This substance is restricted in Regulation (EC) No 1223/2009^[8] as follows: "Rinse-off products".

d Azo colourants are typically formed by a reaction sequence of diazotization of a primary aromatic amine which is referred to as the diazo component, followed by reaction (known as "coupling") with a compound having active methylene groups referred to as a coupling component.

No.	Colour	CI Generic Name ^a	CI Constitution Number	CAS Number	Limitations, requirements and information	
39	Red	Natural Red 4	75470	1 3 9 0 - 6 5 - 4 1260-17-9	Food grade, for example see current European Directive (2008/128/EC), E 120	
40	Violet	Pigment Violet 19	73900	1047-16-1	See ^c .	
41		Pigment Violet 23	51319	2 1 5 2 4 7 - 9 5 - 3 6358-30-1	See ^c .	
42	Blue Pigment Blue 15		74160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$, Check purity criteria for PCB, PCDD/DF and HCB limits.	
				2 7 6 1 4 - 7 1 - 7 6 8 9 8 7 - 6 3 - 3 16040-69-0	For example, limits as specified in existing chemical regulations in EU (see regulation. (EC) No. 1907/2006 "REACH", Annex XVII)	
					Pigment Blue 15:2 and 15:4 are surface treated. Before using surface treated substances, manufacturers should contact their suppliers regarding composition and hazards.	
43		Pigment Blue 16	74100	574-93-6	See ^c .	
44		Pigment Blue 60	69800	81-77-6		
45	Green	Pigment Green 7	74260	1328-53-6	See ^b .	
46		Pigment Green 36	74265	14302-13-7		
47		Natural Green 3	75810	8 0 4 9 - 8 4 - 1 11006-34-1	Food grade, for example see current European Directive (2008/128/EC), E 140 and E 141	

 Table B.1 (continued)

^a The Colour Index is published by The Society of Dyers and Colourists, PO Box 244, Perkin House 82 Grattan Road, Bradford, West Yorkshire BD1 2JB, United Kingdom, <u>www.colour-index.org</u>. Colourants are classified using both their CI generic name and their constitution number. These relate only to the "essential colourant" as defined by the Colour Index.

^b This substance is restricted in Regulation (EC) No 1223/2009^[8] as follows: "Not to be used in eye products" or "Not to be used in products applied on mucous membranes", as applicable.

c This substance is restricted in Regulation (EC) No 1223/2009[8] as follows: "Rinse-off products".

d Azo colourants are typically formed by a reaction sequence of diazotization of a primary aromatic amine which is referred to as the diazo component, followed by reaction (known as "coupling") with a compound having active methylene groups referred to as a coupling component.

Table B.2 lists non-organic colourants commonly used in finger paints.

fable B.2 — Non-organic colourants which are commo	only	v used in	finger	paints
--	------	-----------	--------	--------

No.	Colour	CI Generic Name ^a	CI Constitution Number	CAS Number	Limitations, requirements and information
48	Yellow	Pigment Yellow 42	77492	51274-00-1	Iron oxide yellow
					Food grade, for example see current European Directive (2008/128/EC), E 172
49	Red	Pigment Red 101	77491	1309-37-1	Food grade, for example see current European Directive (2008/128/EC), E 172
50	Blue	Pigment Blue 29	77007	1317-97-1	Ultramarine
				57455-37-5	
a Th	^a The Colour Index is published by The Society of Dyers and Colourists, PO Box 244, Perkin House 82 Grattan Road,				

^a The Colour Index is published by The Society of Dyers and Colourists, PO Box 244, Perkin House 82 Grattan Road, Bradford, West Yorkshire BD1 2JB, United Kingdom, <u>www.colour-index.org</u>. Colourant are classified using both their CI Generic name and their constitution number. These relate only to the "essential colourant" as defined by the Colour Index.

No.	Colour	CI Generic Name ^a	CI Constitution Number	CAS Number	Limitations, requirements and information
51	White	Pigment White 4	77947	1314-13-2	Zinc Oxide
52		Pigment White 6	77891	13463-67-7	Food grade, for example see current European Directive (2008/128/EC), E 171
53		Pigment White 18	77220	2 0 7 - 4 3 9 - 9	Chalk
				208-915-9	Food grade, for example see current European Directive (2008/128/EC), E 170
					Mixture Calcium carbonate, Magnesium carbonate
54		Pigment White 19	77004	8047-76-5	Aluminium silicate, hydrated
			77005		
55		Silver	77820	7440-22-4	Food grade, for example see current European Directive (2008/128/EC), E 174
56		Pigment White 21	77120	7727-43-7	Blancfixe
57		Pigment White 25	77231	91315-45-6	Gypsum
58		Aluminium, zinc, magnesium and calcium stearates	-	Various	
59	Black	Pigment Black 6	77266	1333-86-4	Carbon black
					food contact quality
60		Pigment Black 7	77266	1333-86-4	Carbon black
					food contact quality
61		Pigment Black 11	77499	12227-89-3	Food grade, for example see current European Directive (2008/128/EC), E 172
62	Brown	Pigment Metal 3	77480	7440-57-5	Gold
					Food grade, for example see current European Directive (2008/128/EC), E 175
63	Orange	Ferrous oxide	77489	Various	Food grade, for example see current European Directive (2008/128/EC), E 172 (Mix)

 Table B.2 (continued)

^a The Colour Index is published by The Society of Dyers and Colourists, PO Box 244, Perkin House 82 Grattan Road, Bradford, West Yorkshire BD1 2JB, United Kingdom, <u>www.colour-index.org</u>. Colourant are classified using both their CI Generic name and their constitution number. These relate only to the "essential colourant" as defined by the Colour Index.

Annex C (normative)

Method for the detection of certain azo colourants and determination of free primary aromatic amines

C.1 General

For the detection of certain azo *colourants*, the sample is treated with sodium dithionite in a citrate buffer (pH 6) at 70 °C in a sealed vessel. Upon reductive cleavage, the resultant amines are extracted with *tert*-Butyl methyl ether (MTBE) by means of a "kieselguhr" type SPE column. The ether extract is carefully concentrated with a rotary evaporator or an equivalent sample concentrator and the residue is dissolved in acetonitrile or other suitable solvent, depending upon the detection/determination procedure to be used.

The detection/determination of amines resulting either from the reductive cleavage method or already present in the sample as free primary aromatic amines is performed by high performance liquid chromatography with a diode-array detector (HPLC/DAD) or by capillary gas chromatography with mass-selective detector (GC-MS).

The amines shall be identified by at least one of the chromatographic separation techniques described in this annex. Unless an unequivocal identification is achieved (e.g. by using GC-MS and comparing retention times with known standards), confirmation of positive results shall be achieved by a suitable alternative separation technique (to avoid possible misinterpretation from, for example, isomers of the amines to be identified).

NOTE 1 Some amines may be thermally unstable and cannot be determined by gas chromatography.

The quantification of the amines is performed by HPLC/DAD or GC-MS.

NOTE 2 Some of the amines are cleaved under the reductive conditions in <u>C.6.2</u> according to <u>Table C.1</u>:

Amine compound	Cleavage products
o-Aminoazotoluene	o-Toluidine, 2-Methyl-p-phenylendiamine
2-Amino-4-nitrotoluene	4-Methyl- <i>m</i> -phenylenediamine
4-Aminoazobenzene	<i>p</i> -Phenylenediamine, Aniline

Table C.1 — Amine compounds and cleavage products

4-Aminoazobenzene is reductively cleaved to *p*-phenylenediamine and aniline; *o*-aminoazotoluene is reductively cleaved to 2-methyl-*p*-phenylenediamine and *o*-toluidine; and 5-nitro-*o*-toluidine is reduced to 4-methyl-*m*-phenylenediamine.

A prohibited azo colourant is deemed to be present in the finger paint if, on reductive cleavage, one or more of the amines listed in Tables 1 and 2 is present in a concentration exceeding 30 mg/kg.

Each primary aromatic amines listed in Table 1 is deemed to be determinable at levels exceeding 5 mg/kg.

C.2 Reagents

Reagent-grade chemicals are to be used, if nothing else is specified.

C.2.2 Acetonitrile.

C.2.3 *tert*-Butyl methyl ether.

C.2.4 Citrate/sodium hydroxide buffer, c(trisodium citrate) = 0,06 mol/l, pH 6, preheated to 70 °C or 37 °C: Dissolve 12,6 g citric acid monohydrate and 6,4 g sodium hydroxide in 900 ml water. Adjust the volume to 1 L¹).

C.2.5 Sodium dithionite solution, freshly dissolved in water, $\rho = 200 \text{ mg/ml}$.

C.2.6 Porous, granular "kieselguhr" SPE column²).

C.2.7 Anhydrous sodium sulfate.

C.2.8 Certified amine standards, primarily those listed in <u>Tables 1</u> and <u>2</u>.

NOTE The amines in <u>Tables 1</u> and <u>2</u> are human carcinogens or cancer suspect agents (Cat. 1A and 1B). The handling of these chemicals requires the utmost care and commensurate safety measures.

C.2.9 Internal standards for gas chromatography.

- C.2.9.1 IS 1: 2,4,5-Trichloroaniline, CAS No. 636-30-6.
- C.2.9.2 IS 2: 4-Amino-2-methylquinoline, CAS No. 6628-04-2.
- C.2.9.3 IS 3: Tributylphosphate, CAS No. 126-73-8.

C.2.10 Standard solutions.

C.2.10.1 Stock solution of aromatic amines.

Prepare a stock solution containing 100 mg/l of each aromatic amine (C.2.8) in methanol (C.2.1). This solution shall be stored in the absence of light at (-18 ± 2) °C.

C.2.10.2 Calibration solutions.

Prepare six calibration solutions in the range 0,1 mg/l to 5,0 mg/l by dilution of the aromatic amines stock solutions (C.2.10.1) into (100 \pm 0,1) ml volumetric flasks using MBTE (C.2.3). Before making up to the final volume, add 0,1 ml of internal standard (C.2.10.3) to each calibration solution in order to obtain a final internal standard concentration of 1 mg/l. The calibration solutions are ready for GC-MS analysis.

C.2.10.3 Internal standard solution.

Prepare a stock solution of each internal standard (<u>C.2.9.1</u> – <u>C.2.9.3</u>) at 10,0 mg/l in methanol (<u>C.2.1</u>).

C.2.10.4 Recovery solution of aromatic amines.

Prepare a recovery solution containing 10 mg/l of each aromatic amine (C.2.10.1) in methanol (C.2.1). This solution shall be stored in the absence of light at (-18 ± 2) °C.

^{1) &}quot;Ready for use" solution, Merck-Nr. 1.09437 is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product.

²⁾ Chromabond® XTR is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product.

The stability of all calibration solutions should be checked regularly. These should be stable for up to 6 months when stored in the dark at (-18 ± 2) °C.

NOTE The solvent used will depend on the chromatographic method chosen for analysis.

C.3 Apparatus

Ordinary laboratory equipment, and:

C.3.1 Reaction vessel (50 ml conical flask) of temperature-resistant glass with tight-fitting cap.

C.3.2 Water bath, capable of maintaining a temperature of (37 ± 2) °C and (70 ± 2) °C.

C.3.3 Column made from glass or polypropylene, 25 mm to 30 mm internal diameter, 140 mm to 150 mm length, filled with about 20 g porous, granular "kieselguhr" SPE material, fitted on the outlet with a glass fibre filter (or commercial SPE column)³).

C.3.4 Vacuum rotary evaporator or equivalent low temperature sample concentration system.

C.3.5 Pipettes 10 ml, 5 ml, 2 ml, 1 ml.

C.4 Instrumentation

The analysis shall be performed using equipment selected from the following list.

C.4.1 HPLC with gradient-elution and DAD.

C.4.2 GC with MS.

C.5 Sampling procedure

Homogenize the sample by stirring thoroughly.

C.6 Procedure

C.6.1 Sample preparation

For both the detection of certain azo colourants, and the determination of "free" primary aromatic amines, a representative sample of approximately 1,0 g is weighed accurately into a 50 ml conical flask (<u>C.3.1</u>).

C.6.2 Reductive cleavage of azo colourants

Approximately 15 ml of buffer (C.2.4), preheated to (70 ± 2) °C, is added to the sample. The conical flask is tightly closed and after brief vigorous shaking to homogenize the contents is kept at (70 ± 2) °C for (30 ± 2) min.

To achieve reductive cleavage of the azo colourants $(3,0 \pm 0,01)$ ml of sodium dithionite solution (C.2.5) is added to the conical flask. The conical flask is immediately tightly sealed, thoroughly shaken and kept again at (70 ± 2) °C for another (30 ± 2) min, and then cooled to ambient temperature within 2 min.

© ISO 2015 – All rights reserved

³⁾ Chromabond® XTR (Macherey-Nagel Catalogue No. 730507) is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product. Sitsulina, Antonina Mrs Downloaded: 2020-12-21

C.6.3 Extraction of soluble amines

For the determination of "free" aromatic amines (see 4.5.1.1 and 4.5.1.2), the reductive cleavage (C.6.2) is not carried out. Instead, 20 ml of the buffer solution (C.2.4) preheated only to (37 ± 2) °C is added to the sample. The conical flask is tightly closed and after brief vigorous shaking to homogenize the contents, is kept at (37 ± 2) °C for about 30 min.

C.6.4 Solid phase extraction and concentration of amines

The solution from <u>C.6.2</u> or <u>C.6.3</u>, as appropriate, is poured onto the SPE column without rinsing the conical flask with water or buffer. The aqueous phase is left for 30 min to absorb onto the column. The amines are then extracted twice with 40 ml *tert*-Butyl methyl ether as described below.

Before extracting the SPE column, the first 40 ml of *tert*-Butyl methyl ether is divided into portions of 2×10 ml and 1×20 ml for rinsing the conical flask. Then 10 ml of ether is added to the flask and it is closed and shaken vigorously. After allowing 30 min for the water phase to absorb onto the column, the *tert*-Butyl methyl ether is decanted from the conical flask onto the column leaving behind any residual water in the reaction vessel (Note: addition of 0,2 g of anhydrous sodium sulfate to dry the *tert*-Butyl methyl ether). The eluant is collected in a 100ml glass vessel for evaporation. This operation is repeated with the remaining 10 ml and 20 ml portions of *tert*-Butyl methyl ether. Finally, the second 40 ml is poured directly onto the column.

The *tert*-Butyl methyl extract is carefully concentrated at a maximum temperature of 25 °C using a rotary evaporator with vacuum, or equivalent sample concentrator, to about 1 ml (do not allow the solution to go to dryness). If *tert*-Butyl methyl is not the required chromatographic solvent, the remainder of the ether is carefully removed under a light flow of inert gas and the residue made up to 2,0 ml with acetonitrile in a graduated test tube. If *tert*-Butyl methyl is the required chromatographic solvent, the residue is quantitatively transferred to a small graduated tube and the volume made up to $(2,0 \pm 0,1)$ ml using washings from the container used in the rotary evaporator flask or sample concentrator.

During solvent removal, considerable losses of amines may occur if the process is not closely supervised (i.e. vacuum too high, temperature too high, high inert gas flow). The solvent removal should be performed under subdued light (avoid direct sunlight and if possible, direct fluorescent lightening).

If taken to dryness, each residue is immediately dissolved in $(2,0 \pm 0,1)$ ml of a suitable solvent, e.g. methanol in an amber glass flask, and subsequently analysed. If the analysis cannot be carried out immediately, the sample has to be stored at (-20 ± 2) °C.

The quantification of the amines is conducted using HPLC/DAD or GC-MS. If using GC-MS, internal standards shall be used.

NOTE Certain amines, e.g. 2,4-toluenediamine and 2,4-diaminoanisole, have a very low stability. If the extraction and concentration procedure is not carried out expediently, partial or total loss of amines can occur.

C.6.5 Chromatography

C.6.5.1 General

The following conditions have been found suitable for the detection/determination of primary aromatic amines. The analysis of finger paints shall be performed in accordance with the methods of analysis described in this part of ISO 8124. Alternative methods of analysis or modifications to the procedures described are acceptable only if they are capable of achieving at least the accuracy and precision of the methods described in this part of ISO 8124 i.e. have an adequate sensitivity and have been validated to show that the results are equivalent to those of these standard methods.

NOTE It is reported that some amines are heat sensitive and may breakdown on heating when injected onto a GC column, requiring an alternative detection technique to be used.

Eluent 1	Acetonitrile	
Eluent 2	0,575 g ammonium dihydrogenphosphate + 0,7 g disodium hydrog phosphate in 1 000 ml water, pH 6,9	
Column	HyPurity Advance 250 mm x 3 mm; 5 μ m	
	ThermoQuest Catalogue No. 21005-0035	
Flow rate	0,5 ml/min	
Gradient	0 min 15 % eluent 1, within 45 min linear to 75 % eluent 1	
Column temperature	40 °C	
Injection volume	5,0 µl	
Detection	DAD, full spectral scan	
Quantification	at 240 nm, 280 nm and 305 nm (see <u>Figures C.1</u> to <u>C.3</u>)	

Figure C.1 — Example of HPLC-DAD chromatogram of 22 mixed aromatic amine standard at 240 nm using the conditions in <u>C.6.5.1</u>

Figure C.2 — Example of HPLC-DAD chromatogram of 22 mixed aromatic amine standard at 280 nm using the conditions in <u>C.6.5.1</u>

Figure C.3 — Example of HPLC-DAD chromatogram of 22 mixed aromatic amine standard at 305 nm using the conditions in <u>C.6.5.1</u>

No.	Retention time	Primary aromatic amine	No.	Retention time	Primary aromatic amine
	min			min	
1	4,97	4-Methoxy- <i>m</i> -phenylen- ediamine	12	19,4	4-Chloro- <i>o</i> -toluidine
2	5,29	4-Methyl- <i>m</i> -phenylene- diamine	13	19,4	2-Naphthylamine
3	8,75	4-Methoxyaniline	14	21,52	3,3-Dimethoxybenzidine
4	9,64	o-Toluidine	15	21,85	3,3-Dimethylbenzidine
5	12,69	6-Methoxy- <i>m</i> -toluidine	16	22,43	4,4-Thiodianiline
6	13,89	4,4-Oxydianiline	17	25,33	4,4-Methylenedi-o-toluidine
7	14,99	Benzidine	18	29,01	4-Aminobiphenyl
8	15,50	4-Chloroaniline	19	30,80	<i>p</i> -Aminoazobenzene
9	16,10	5-Nitro- <i>o-</i> toluidine	20	32,45	2,2-Dichloro-4,4-methylen- edianiline
10	16,7	4,4-Methylenedianiline	21	32,45	3,3-Dichlorobenzidine
11	17,8	2,4,5-Trimethylaniline	22	34,37	o-Aminoazotoluene

Table C.2 — Key to retention time for LC-DAD at 280nm

C.6.5.3 Gas Chromatography (GC) with mass spectrometry

Capillary column	RTX5 Amine or equivalent type, length: 30 m, internal diameter: 0,25 mm, film thickness: 0,25 μm , preferably deactivated for amines
Injector	split/splitless
Injection temperature	220 °C
Carrier	Helium
Temp. programme	60 °C (3 min), 60 °C to 280 °C (7 °C/min), 280 °C (4 min), 280°C to 300°C (10°C/min), 300°C (2 min)
Injection volumes	1,0 μl, split 1:15
A single quadrupole MS instrument is recommen	ded with ionization by electronic impact at 70 eV.

GC interface temperature	250 °C
Source temperature	200 °C

In SIM mode, the fragment ions allow quantification by using one of the three ions as the target quantification ion and the remaining two ions as qualifiers identified in <u>Table C.3</u>.

NOTE T1 is considered as the target ion for quantification.

The time spent on each ion (dwell time) shall be the same for all ions within a given window. The m/z values are rounded. Exact values should be used as SIM parameters.

Primary aromatic amine	Target ion m/z	Qualifier 1 m/z	Qualifier 2 m/z
o-Toluidine	106	107	77
4-Chloroaniline	127	129	92
4-Methoxy aniline	108	123	80
6-Methoxy-m-toluidine	122	137	94
2,4,5-Trimethylaniline	135	120	134
4-Chloro-o-toluidine	106	141	140
4-Methyl-m-phenylendiamine	121	122	94
4-Methoxy-m-phenylenediamine	123	138	95
2-Naphthylamine	143	115	116
5-Nitro-o-toluidine	152	106	78
4-Aminobiphenyl	169	168	170
p-Aminoazobenzene	92	197	120
4,4'-Oxydianiline	200	108	171
Benzidine	184	183	185
4,4-Methylenedianiline	198	197	106
o-Aminoazotoluene	106	225	134
4,4-Methylenedi-o-toluidine	226	211	225
3,3-Dimethylbenzidine	212	213	106
4,4'-Thiodianiline	216	184	215

Table C.3 — List of ions for quantification

Licensed to: Tsitsulina, Antonina Mrs Downloaded: 2020-12-21

Primary aromatic amine	Target ion m/z	Qualifier 1 m/z	Qualifier 2 m/z
3,3'-Dichlorobenzidine	252	254	126
2,2-Dichloro-4,4-methylenedianiline	231	266	195
3,3-Dimethoxybenzidine	244	201	229
2,4,5-Trichloroaniline	195		
4-Amino-2-methylquinoline	158		
Tributyl phosphate	99		

 Table C.3 (continued)

C.6.5.4 Maximum permitted tolerances

The relative intensities of the ion for quantification against respectively the two qualifiers, expressed as a percentage of the intensity of the most intense ion, shall correspond to those of the calibration standard solutions, at comparable concentrations, measured under the same conditions, within the tolerances described <u>Table C.4</u>.

The calibration standard used as reference should be at the middle of the calibration curve.

Table C.4 — Maximum permitted tolerances for relative ion intensities

Relative intensity	Relative range of the response
% of base ion intensity	
> 50 %	±10 %
> 20 % - 50 %	±15 %
> 10 % - 20 %	±20 %
≤ 10 %	±50 %

Figure C.4 shows an example of GC-MS chromatogram of 22 mixed aromatic amines. <u>Table C.5</u> shows a key to retention time for GC-MS.

ISO 8124-7:2015(E)

Figure C.4 — Example of GC-MS chromatogram of 22 mixed aromatic amines

No	Retention time (min)	Primary aromatic amine	No	Retention time (min)	Primary aromatic amine
1	9,07	<i>o-</i> Toluidine	12	26,54	<i>p</i> -Aminoazobenzene
2	11,38	4-Methoxyaniline	13	26,94	4,4-Oxydianiline
3	11,93	4-Chloroaniline	14	27,07	Benzidine
4	13,40	6-Methoxy- <i>m</i> -toluidine	15	27,19	4,4-Methylenedianiline
5	13,73	2,4,5-Trimethylaniline	16	28,95	o-Aminoazotoluene
6	13,92	4-Chloro- <i>o</i> -toluidine	17	29,33	4,4-Methylenedi- <i>o</i> -toluidine
7	15,53	4-Methyl- <i>m</i> -phenylenediamine	18	29,62	3,3-Dimethylbenzidine
8	17,20	4-Methoxy-m-phenylenediamine	19	30,26	4,4-Thiodianiline
9	18,58	2-Naphthylamine	20	31,39	3,3-Dichlorobenzidine
10	19,43	5-Nitro- <i>o-</i> toluidine	21	31,42	2,2-Dichloro-4,4-methylenedi- aniline
11	21,84	4-Aminobiphenyl	22	31,53	3,3-Dimethoxybenzidine

Table C.5 — Key to retention time for GC-MS

C.6.6 Verification of analytical system

To check the analytical procedure, add 0,2 ml of standard solution (C.2.10.4) and 1,0 ml methanol to reaction vessel C.3.1 containing 15 ml buffer preheated to (70 ± 2) °C. Then follow the procedure from C.6.2 (second sentence). The recovery rate of the amines will normally be expected to be ≥ 70 % with the exception of 4-methyl-m-phenylenediamine, 4-methoxy-m-phenylenediamine, 2-naphthylamine, p-aminoazobenzene and o- aminoazotoluene where the recoveries have been found to be between 10 % and 50 %.

C.7 Calculation

The amine concentration is calculated from the area of each amine peak and is given as mass portion *w*, in mg/kg, of single amine component in test material according to Formula (1):

$$w = \frac{A_s \cdot C_c \cdot V_s}{A_c \cdot E_s} \tag{C.1}$$

where

As	is the peak area of the amine in the sample solution in area units;
A _c	is the peak area of the amine in the calibration solution in area units;
Cc	is the concentration of the amine in the calibration solution ($\mu g/ml$);
Es	is the initial mass of sample in the end volume (g);
V_{S}	is the volume of test solution obtained in <u>C.6.4</u> used for chromatographic analysis (ml).

If an internal standard has been used, the mass portion of amine component (w) is given as:

$$w = \frac{A_{IS}(S)}{A_{IS}(C)} \tag{C.2}$$

where

w

is the mass portion of a single amine component in test material, in mg/kg;

Licensed to: Tsitsulina, Antonina Mrs Downloaded: 2020-12-21 Single user licence only, copying and networking prohibited © ISO 2015 – All rights reserved

- is the peak area of the internal standard in the sample solution in area units; $A_{is(s)}$
- is the peak area of the internal standard in the calibration solution in area units. $A_{is(c)}$

C.8 Precision

C.8.1 Linearity

The correlation coefficient shall be > 0,990.

C.8.2 Limits of detection (LOD) and quantification (LOQ)

The LODs and the LOQs for method using GC-MS and LC-DAD instruments are shown in Tables C.6 and C.7.

Primary aromatic amine	LOD	LOQ	Primary aromatic amine	LOD	LOQ		
	mg/l	mg/kg		mg/l	mg/kg		
o-Toluidine	0,02	0,5	<i>p</i> -Aminoazobenzene	0,02	0,5		
4-Methoxyaniline	0,02	0,5	4,4-Oxydianiline	0,05	1,0		
4-Chloroaniline	0,02	0,5	Benzidine ^a	0,05	0,5		
6-Methoxy- <i>m</i> -toluidine	0,02	0,5	4,4-Methylenedianiline	0,05	1,0		
2,4,5-Trimethylaniline	0,02	0,2	o-Aminoazotoluene	0,02	0,5		
4-Chloro- <i>o</i> -toluidine ^a	0,02	0,5	4,4-Methylenedi-o-toluidine	0,05	1,0		
4-Methyl- <i>m</i> -phenylenediamine	0,02	0,2	3,3-Dimethylbenzidine	0,04	1,0		
4-Methoxy-m-phenylenediamine	0,05	0,5	4,4-Thiodianiline	0,04	1,0		
2-Naphthylamine ^a	0,01	0,2	3,3-Dichlorobenzidine	0,05	1,0		
5-Nitro- <i>o-</i> toluidine	0,05	1,0	2,2-Dichloro-4,4-methylenedi- aniline	0,05	1,0		
4-Aminobiphenyla	0,01	0,2	3,3-Dimethoxybenzidine	0,05	1,0		
a Primary aromatic amines that shall not be determinable when tested in accordance with the test method in Anney C							

Table C.6 — Limits of detection (LOD) and quantification (LOQ) Using GC-MS

Table C.7 — Limits of detection (LOD) and quantification (LOQ) using LC-DAD at 240 nm

	LOD	LOQ		LOD	LOQ
Primary aromatic amine	mg/l	mg/kg	Primary aromatic amine	mg/l	mg/kg
o-Toluidine	1,0	2,0	<i>p</i> -Aminoazobenzene	1,0	2,0
4-Methoxyaniline	1,0	2,0	4,4-Oxydianiline	1,0	2,0
4-Chloroaniline	1,0	2,0	Benzidine	-	-
6-Methoxy- <i>m</i> -toluidine	1,0	2,0	4,4-Methylenedianiline	1,0	2,0
2,4,5-Trimethylaniline	1,0	2,0	o-Aminoazotoluene	1,0	2,0
4-Chloro-o-toluidine	-	-	4,4-Methylenedi- <i>o</i> -toluidine	1,0	2,0
4-Methyl- <i>m</i> -phenylenediamine	1,0	2,0	3,3-Dimethylbenzidine	1,0	2,0
4-Methoxy- <i>m</i> -phenylenediamine	1,0	2,0	4,4-Thiodianiline	1,0	2,0
2-Naphthylamine	-	-	3,3-Dichlorobenzidine	1,0	2,0
5-Nitro- <i>o-</i> toluidine	1,0	2,0	2,2-Dichloro-4,4-methylenedi- aniline	1,0	2,0
4-Aminobiphenyl	-	-	3,3-Dimethoxybenzidine	1,0	2,0

Licensed to: Tsitsulina, Antonina Mrs

Downloaded: 2020-12-21

Single user licence only, copying and networking prohibited © ISO 2015 – All rights reserved

C.8.3 Repeatability (r) and reproducibility (R)

Each primary aromatic amine was determined in a single batch of finger paint containing 22 aromatic amines each spiked at a concentration of 1 mg/kg using $\underline{C.6.3}$ by two independent laboratories on six replicate samples using GC-MS and shown in Table C.8.

Design and the second second	Conc	Lab 1	Lab 2
Primary aromatic amine	mg/kg	mg/kg	mg/kg
o-Toluidine	1,00	1,03 ± 0,17	0,81 ± 0,13
4-Methoxy-aniline	1,00	1,28 ± 0,16	0,68 ± 0,10
4-Chloroaniline	1,00	1,04 ± 0,13	0,63 ± 0,09
6-Methoxy-m-toluidine	1,00	1,17 ± 0.09	0,35 ± 0,07
2,4,5-Trimethylaniline	1,00	0.89 ± 0,14	0,44 ± 0,05
4-Chloro-o-toluidine	1,00	1,11 ± 0,18	0,87 ± 0,04
p-Aminoazobenzene	1,00	0,82 ± 0,10	0,16 ± 0,01
4,4'-Oxydianiline	1,00	0,83 ± 0,10	0,95 ± 0,07
Benzidine	1,00	0,72 ± 0,09	0,74 ± 0,06
4,4'-Methylenedianiline	1,00	0,72 ± 0,09	0,60 ± 0.06
o-Aminoazotoluene	1,00	0,99 ± 0,09	0,12 ± 0,01
4,4-Methylenedi-o-toluidine	1,00	1,02 ± 0,09	0,16 ± 0,01
4-Methyl-m-phenylenediamine	1,00	Not detected	0,15 ± 0,05
4-Methoxy-m-phenylenediamine	1,00	Not detected	0,11 ± 0,03
2-Naphthylamine	1,00	0,69 ± 0,03	0,18 ± 0,01
5-Nitro-o-toluidine	1,00	1,62 ± 0,03	0,69 ± 0,03
4-Aminobiphenyl	1,00	0,80 ± 0,14	0,47 ± 0,02
3,3'-Dimethylbenzidine	1,00	0,91 ± 0,17	0,24 ± 0,01
4,4'-Thiodianiline	1,00	0,94 ± 0,07	0,22 ± 0,03
3,3'-Dichlorobenzidine	1,00	1,28 ± 0,15	0,83 ± 0,06
2,2'-Dichloro-4,4-methylenedianiline	1,00	1,33 ± 0,12	0,77 ± 0.06
3,3'-Dimethoxybenzidine	1,00	1,36 ± 0,21	0,24 ± 0,01

Table C.8 — Repeatability and reproducibility data for soluble aromatic amines by GC-MS

C.8.4 Repeatability and reproducibility data for reductively cleaved aromatic amines

Each cleaved aromatic amine was determined in a single batch of finger paint containing 22 aromatic amines each spiked at 0,5 mg/kg using $\underline{C.6.2}$ by two independent laboratories on six replicate samples using GC-MS and shown in Table C.9.

Reductively cleaved aromatic	Conc	Lab 1	Lab 2
amine	mg/kg	mg/kg	mg/kg
o-Toluidine	0,5	0,73 ± 0,09	$0,33 \pm 0,03$
4-Methoxy-aniline	0,5	$0,48 \pm 0,02$	$0,32 \pm 0.03$
4-Chloroaniline	0,5	$0,42 \pm 0,03$	0,30 ± 0.05
6-Methoxy-m-toluidine	0,5	0,51 ± 0,02	$0,19 \pm 0,02$
2,4,5-Trimethylaniline _{Licensed to: T}	sitsulir <mark>9</mark> a,5Antoni	na Mrs 0,32 ± 0,04	$0,24 \pm 0,02$

Downloaded: 2020-12-21

© ISO 2015 – All rights reserved

Reductively cleaved aromatic	Conc	Lab 1	Lab 2
amine	mg/kg	mg/kg	mg/kg
4-Chloro-o-toluidine	0,5	$0,40 \pm 0,03$	$0,41 \pm 0,04$
4-Methyl-m-phenylenediamine	0,5	Not detected	0,15 ± 0,02
4-Methoxy-m-phenylenediamine	0,5	Not detected	0,19 ± 0,02
2-Naphthylamine	0,5	$0,28 \pm 0,03$	0,17 ± 0,01
5-Nitro-o-toluidine	0,5	Not detected	$0,28 \pm 0,02$
4-Aminobiphenyl	0,5	0,36 ± 0,03	$0,22 \pm 0,01$
p-Aminoazobenzene	0,5	Not detected	0,17 ± 0.01
4,4'-Oxydianiline	0,5	0,72 ± 0.05	0,78 ± 0,10
Benzidine	0,5	0,55 ± 0.03	0,53 ± 0.07
4,4'-Methylenedianiline	0,5	Not detected	$0,34 \pm 0.06$
o-Aminoazotoluene	0,5	Not detected	$0,14 \pm 0,01$
4,4-Methylenedi-o-toluidine	0,5	$0,74 \pm 0,04$	$0,20 \pm 0,01$
3,3'-Dimethylbenzidine	0,5	0,55 ± 0.04	$0,24 \pm 0,02$
4,4'-Thiodianiline	0,5	0,77 ± 0.05	0,23 ± 0,01
3,3'-Dichlorobenzidine	0,5	0,71 ± 0.07	$0,41 \pm 0.04$
2,2'-Dichloro-4,4'-methylenedianiline	0,5	0,78 ± 0.06	0,39 ± 0.04
3,3'-Dimethoxybenzidine	0,.5	0,83 ± 0.06	0,22 ± 0.02

Table C.9 (continued)

C.8.5 Recovery

C.8.5.1 Recovery of 22 soluble aromatic amines

Recovery was determined in a single batch of finger paint containing 22 aromatic amines each spiked at a concentration of 1,0 mg/kg using <u>C.6.2</u> by two independent laboratories on replicate samples using GC-MS and shown in Table C.10.

Primary aromatic amine	% Recovery	Primary aromatic amine	% Recovery
	(Average of Lab 1 and 2)		(Average of Lab 1 and 2)
o-Toluidine	92	p-Aminoazobenzene	49
4-Methoxy-aniline	98	4,4'-oxydianiline	89
4-Chloroaniline	84	Benzidine	73
6-Methoxy-m-toluidine	76	4,4'-Methylenedianiline	66
2,4,5-Trimethylaniline	67	o-Aminoazotoluene	56
4-Chloro-o-toluidine	99	4,4-Methylenedi-o-toluidine	59
4-Methyl-m-phenylenediamine	< 10	3,3'-Dimethylbenzidine	58
4-Methoxy-m-phenylenediamine	< 10	4,4'-Thiodianiline	58
2-Naphthylamine	44	3,3'-Dichlorobenzidine	106
5-Nitro-o-toluidine	116	2,2'-Dichloro-4,4'-methylene- dianiline	105
4-Aminobiphenyl	64	3,3'-Dimethoxybenzidine	80

Table C.10 — Recovery of 22 primary aromatic amines

Licensed to: Tsitsulina, Antonina Mrs

Downloaded: 2020-12-21

Downloaded: 2020-12-21 Single user licence only, copying and networking prohibited © ISO 2015 – All rights reserved

C.8.5.2 Verification data

Verification data was determined using <u>C.6.6</u> (Verification of analytical system) for 22 primary aromatic amines as shown in <u>Table C.11</u>.

Primary aromatic amine	% Recovery	Primary aromatic amine	% Recovery
o-Toluidine	125	p-Aminoazobenzene	24
4-Methoxy-aniline	116	4,4'-Oxydianiline	112
4-Chloroaniline	112	Benzidine	97
6-Methoxy-m-toluidine	113	4,4'-Methylenedianiline	102
2,4,5-Trimethylaniline	102	o-Aminoazotoluene	42
4-Chloro-o-toluidine	107	4,4-Methylenedi-o-toluidine	109
4-Methyl-m-phenylenediamine	58	3,3'-Dimethylbenzidine	96
4-Methoxy-m-phenylenediamine	14	4,4'-Thiodianiline	109
2-Naphthylamine	68	3,3'-Dichlorobenzidine	104
5-Nitro-o-toluidine	117	2,2'-Dichloro-4,4'-methylenedianiline	100
4-Aminobiphenyl	86	3,3'-Dimethoxybenzidine	122
NOTE The data presented is bas	ed on a single laboratory.		

Table C.11 — Verification data

C.9 Report

Any report of analysis shall refer to this method and include:

- a) precise sample description/identification/article number;
- b) type and date of sampling;
- c) date of submission and date of analysis;
- d) data on procedure (separation and detection);
- e) data on quantification procedure;
- f) calculated results;
- g) a statement as to whether or not a proscribed azo colourant has been detected (see <u>4.2.2</u>);
- h) a statement as to whether the requirements for primary aromatic amines have been met (see <u>4.5.1</u>);
- i) measurement uncertainty (where relevant).

C.10 Additional Information

The effect of evaporation on amine recovery was studied by removing the extracting solvent, *tert*-Butyl methyl ether (MTBE), to dryness at 50 °C. The resulting recoveries were less than 40 % for the target amines, giving an indication of the effects that evaporation to dryness has on amine recovery. The method requires the evaporation of the solvent to approximately 5 ml by rotary evaporation. This volume is transferred to a 10 ml test tube and reduced to a final extract volume of $(1 \pm 0,01)$ ml with nitrogen at room temperature.

Due to the polar nature of some amines, clean chromatography conditions are essential when undertaking this analysis.

Annex D

(normative)

List of preservatives allowed for use in finger paints and maximum allowed concentrations

Ref. No.	Substance	EC Number	CAS Number	Maximum allowed concen- tration	Limitations and requirements
1	Benzoic acid, sodium benzoate	200-618-2 208-534-8	65-85-0 532-32-1	0,5 % (acid)	
2	Ammonium benzoate calcium benzoate potassium benzoate magnesium benzoate MEA-benzoate ethyl benzoate ethyl benzoate propyl benzoate butyl benzoate isobutyl benzoate isopropyl benzoate phenyl benzoate	217-468-9 218- 235-4 209-481-3 209-045-2 224- 387-2 202-259-7 202-284-3 219- 020-8 205-252-7 204-401-3 213- 361-6 202-293-2	1863-63-4 2090- 05-3 582-25-2 553-70-8 4337- 66-0 93-58-3 93-89-0 2315-68-6 136-60-7 120-50-3 939-48-0 93-99-2	0,5 % (acid)	
3	Propionic acid, ammonium propionate calcium propionate magnesium propionate potassium propionate sodium propionate	201-176-3 241- 503-7 223-795-8 209-166-0 206- 323-5 205-290-4	79-09-4 17496- 08-1 4075-81-4 557-27-7 327-62-8 137-40-6	2 % (acid)	
4	Hexa-2,4-dienoic acid and its salts: Sorbic acid calcium sorbate sodium sorbate potassium sorbate	203-768-7 231- 321-6 231-819-3 246-376-1	110-44-1 7492- 55-9 7757-81-5 24634-61-5	0,6 % (acid)	
5	Paraformaldehyde		30525-89-4	0,1 % ("free" for- maldehyde)	Oral cosmetic products limit
6	Biphenyl-2-ol (o-Phenylphenol) sodium o-phenylphenate potassium o-phenylphenate MEA o-phenylphenate	201–993–5 205– 055–6 237–243–9 282–227–7	90-43-7 132-27-4 13707- 65-8 84145-04-0	0,2 % expressed as the phenol	
7	Pyrithione zinc	236-671-3	13463-41-7	0,5 %	

Table D.1 — Preservatives

|--|

Ref. No.	Substance	EC Number	CAS Number	Maximum allowed concen- tration	Limitations and requirements
8	Inorganic sulfites and hydro- gen-sulfites: Sodium sulfite ammonium bisulfite ammonium sulfite potassium sulfite potassium hydrogen sulfite	231-821-4 233- 469-7 233-484-9 233-321-1 231- 870-1 231-548-0 231-673-0 240-795-3	7757-83-7 10192- 30-0 10196-04-0 10117-38-1 7773-03-7 7631- 90-5 7681-57-4 16731-55-8	0,2 % (as "free" SO ₂)	
	sodium bisulfite sodium metabisulfite potassium metabisulfite				
9	Chlorobutanol	200-317-6	57-15-8	0,5 %	
10	4-Hydroxybenzoic acid methylparaben potassium ethylparaben sodium methylparaben sodium ethylparaben ethylparaben sodium paraben potassium methylparaben calcium paraben phenylparaben	99-96-7 99-76-3 36457-19-9 16782-08-4 5026- 62-0 35285-68-8 120-47-8 114- 63-6 2611-07-2 69959-44-0 17696-62-7	202-804-9 202- 785-7 253-048-1 240-830-2 225-714-1 252- 487-6 204-399-4 204-051-1 247- 464-2 274-235-4 241-698-9	0,4 % (as acid) for single ester, 0,8 % (as acid) for mixtures of esters	
11	3-Acetyl-6-methylpyran-2,4 (3H)-dione and its salts: Dehydroacetic acid sodium dehydroacetate	208-293-9 224-580-1	520-45-6 4418- 26-2 16807-48-0	0,6 % (as acid)	
12	Formic acid sodium formate	200-579-1 205-488-0	64–18–6 141–53–7	0,5 % (as acid)	
13	3,3'-Dibromo-4,4'-hexam- ethylenedioxydi-benzami- dine and its salts (includ- ing isethionate) (Dibromohexa- midine isethionate)	299-116-4	93856-83-8	0,1 %	
14	Undec-10- enoic acid and its salts: Undecylenic acid potassium undecylenate sodium undecylenate calcium undecylenate TEA-undecylenate MEA-undecylenate	203-965-8 222-264-8 215- 331-8 282-908-9 260-247-7	112-38-9 6159- 41-7 3398-33-2 1322-14-1 84471- 25-0 56532-40-2	0,2 % (as acid)	
15	5- Pyrimidinamine, 1,3- bis (2-ethylhexyl)-5- methyl- hexahydropyrimidin-5-amine (Hexetidine)	205-513-5	141-94-6	0,1 %	
16	2-Bromo-2-nitropro- pane-1,3-diol (Bronopol)	200-143-0	52-51-7	0,1 %	Not to be used in formulations containing amine substances such as diethanolamine, to avoid generation of nitrosamines
17	2,4-Dichlorobenzyl alcohol	217-210-5	1777-82-8	0,15 %	

Table D.1 (continued)

Ref. No.	Substance	EC Number	CAS Number	Maximum allowed concen- tration	Limitations and requirements
18	1-(4-Chlorophenyl)-3-(3,4-di- chlorophenyl) urea (Triclocar- ban)	202-924-1	101-20-2	0,2 %	Purity crite- ria:3,3',4,4'-Tet- rachloro-azoben- zene < 1 ppm
					3,3',4,4'-Tetra- chloro-azoxyben- zene
					< 1 ppm
19	5-Chloro-2- (2,4- dichlorophe- noxy) phenol (Triclosan)	222–182–2	3380-34-5	0,3 %	
20	Chloroxylenol	201-793-8	88-04-0	0,5 %	
21	N,N"-methylenebis[N'-[3-(hy- droxymethyl)-2,5-dioxoimida- zolidin-4-yl]urea] (Imidazolidi- nyl urea)	254-372-6	39236-46-9	0,6 %	
22	Poly(methylene),.alpha.,.ome- gabis[[[(aminoiminomethyl) amino]iminomethyl] amino]-, dihydrochloride (Polyamino- propyl biguanide)		70170-61-5 28757-47-3 133029-32-0	0,3 %	
23	2-Phenoxyethanol	204-589-7	122-99-6	1,0 %	
24	Methenamine	100-97-0	202-905-8	0,15 %	
25	Methenamine-3-chloro-ally- lochloride (Quaternium-15)	223-805-0	4080-31-3	0,2 %	
26	1-(4-Chlorophenoxy)-1-(im- idazol-1-yl)-3,3-dimethylbu- tan-2-one (Climbazole)	253-775-4	38083-17-9	0,5 %	
27	1,3-Bis (hydroxyme- thyl)-5,5-dimethylimida- zolidine-2,4-dione (DMDM Hydantoin)	229–222–8	6440-58-0	0,6 %	
28	1-Hydroxy-4-methyl-6-(2,4,4- trimethylpentyl) 2-pyridon and its monoethanolamine salt (Piroctone Olamine)	272-574-2	50650-76-5 68890-66-4	0,5 %	
29	2,2'-methylenebis(6-bro- mo-4-chlorophenol) (Bromo- chlorophene)	239-446-8	15435-29-7	0,1 %	
30	4-Isopropyl-m-cresol (o-Cy- men-5-ol)	221-761-7	3228-02-2	0,1 %	
31	Mixture of 5-Chloro-2-me- thyl-isothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one with magnesium chloride and magnesium nitrate	247-500-7	26172-55-42682- 20-455965-84-9	0,000 8 % (of a mixture in the ratio 3:1 of 5-chloro-2-methyli- sothiazol 3(2H)-one and 2-methylisothi- azol-3 (2H)-one	See ^a .
32	2-methylisothiazol-3(2H)-one (MIT)	220-239-6	2682-20-4	0,01 %	See ^a .

No.	Substance	EC Number	CAS Number	Maximum allowed concen- tration	Limitations and requirements
33	2-Benzyl-4-chlorophenol (Chlo- rophene)	204-385-8	120-32-1	0,2 %	
34	2-Chloroacetamide	201-174-2	79-07-2	0,3 %	
35	N,N"-bis(4-chloro- phenyl)-3,12-diimi- no-2,4,11,13-tetraaza- tetradecanediamidine and its digluconate, diacetate and dihydrochloride: Chlorhexidine Chlorhexidine Diacetate Chlorhexidine Digluconate Chlorhexidine Digluconate	200-238-7 200- 302-4 242-354-0 223-026-6	55-56-1 56-95-1 18472- 51-0 3697-42-5	0,3 % (as chlorhex- idine)	
36	Alkyl (C 12–22) trimethyl ammonium bromide and chlo- ride: Behentrimonium chloride cetrimonium bromide laurtrimonium bromide laurtrimonium chloride steartrimonium bromide steartrimonium chloride	241-327-0 200- 311-3 203-928-6 214-290-3 203- 927-0 214-294-5 203-929-1	17301-53-0 57-09-0 112-02-7 1119-94-4 112- 00-5 1120-02-1 112-03-8	0,1 %	
37	4,4-Dimethyl-1,3-oxazolidine	257-048-2	51200-87-4	0,1 %	The pH of the finished product may not be lower than 6.
38	N-(Hydroxymethyl)-N-(dihy- droxymethyl-1,3-dioxo-2,5-im- idazolidinyl-4)-N'-(hydroxyme- thyl) urea (Diazolidinyl Urea)	278-928-2	78491-02-8	0,5 %	
39	Benzenecarboximidamide, 4,4'-(1,6-hexanediyl- <i>bis</i> -(ox- y))- <i>bis</i> -(3-nitrobenzami- dine) and its salts (including isethionate and phydroxyben- zoate):	211-533-5 299-055-3	3811-75-4 659- 40-5 93841-83-9	0,1 %	
	nexamidine,				
	nexamidine diisethionate,				
40	Pentane-1,5-dial (Glutaralde- hyde. Glutaral)	203-856-5	111-30-8	0,1 %	
41	3-(p-Chlorophenoxy)-pro- pane-1,2 diol (Chlorphenesin)	203-192-6	104-29-0	0,3 %	
42	Sodium N-hydroxymethyl-gly- cinate	274-357-8	70161-44-3	0,5 %	
43	Benzenemethanaminium, N,N- dimethyl-N-[2-[2-[4-(1,1,3,3,- tetramethylbutyl)phenoxy] ethoxy] ethyl]-, chloride (Benz- ethonium Chloride)	204-479-9	121-54-0	0.1 %	

Table D.1 (continued)

Annex E

(normative)

Method for the determination of hexachlorobenzene, polychlorinated biphenyls and benzo[α]pyrene

E.1 Principle

Solvent extractable benzo[α]pyrene (B[α]P), hexachlorobenzene (HCB) and polychlorinated biphenyl (PCB) congeners are determined in finger paints by mixing with anhydrous sodium sulfate and extracting with either a 1:1 mixture of cyclohexane and acetone for HCB and PCBs or 2:1 mixture of toluene and acetone for B[α]P using a soxhlet extractor. The extract is cleaned up and concentrated prior to analysis using gas chromatography with a mass spectrometric detection (GC-MS) using the internal standard method of calibration.

E.2 Standards, reagents and solvents

Reagent-grade chemicals are to be used, unless otherwise specified.

The stability of all calibration solutions shall be checked regularly. These should be stable for up to six months when stored in the dark at (5 ± 2) °C.

- E.2.1 Hexane, analytical grade.
- E.2.2 Cyclohexane, analytical grade.
- **E.2.3** Acetone, analytical grade.
- E.2.4 2,2,4-trimethylpentane, analytical grade.
- **E.2.5 Toluene**, analytical grade.
- **E.2.6** Cyclohexane (E.2.2): acetone (E.2.3) 1:1 v/v mixture.
- **E.2.7** Toluene (E.2.5):acetone (E.2.3) 2:1 v/v mixture.
- E.2.8 Anhydrous sodium sulfate.
- E.2.9 Standards.
- **E.2.9.1** Hexachlorobenzene (HCB), CAS No 118-74-1, > 99 %.
- **E.2.9.2 Commercial PCB standard mixture** or individual PCB congeners:
- PCB congener 11 (3,3'-Dichlorobiphenyl), CAS No: 2050-67-1;
- PCB congener 28 (2,4,4'-Trichlorobiphenyl), CAS No: 7012-37-5;
- PCB congener 52 (2,2',5,5'-Tetrachlorobiphenyl), CAS No: 35693-99-3;

- PCB congener 101 (2,2',4,5,5'-Pentachlorobiphenyl), CAS No: 37680-73-2;
- PCB congener 118 (2,3',4,4',5-Pentachlorobiphenyl), CAS No: 31508-00-6;
- PCB congener 138 (2,2',3,4,4',5'-Hexachlorobiphenyl), CAS No: 35065-28-2;
- PCB congener 153 (2,2',4,4',5,5'-Hexachlorobiphenyl), CAS No: 35065-27-1;
- PCB congener 180 (2,2',3,4,4',5,5'-Heptachlorobiphenyl), CAS No:35065-29-3;
- PCB congener 209 (Decachlorobiphenyl), CAS No: 2051-24-3,
- **E.2.9.3 Benzo**[*α*]**pyrene** (B[*α*]P), CAS No: 50-32-8, > 99 %.

E.2.10 Internal standards.

E.2.10.1 HCB 13C6, CAS No: 118-74-1.

- E.2.10.2 PCB congener 101 13C12, CAS No: 37680-73-2.
- **E.2.10.3 PCB congener 138 13C12**, CAS No: 35065-28-2.
- **Ε.2.10.4 Β [α] P d12**, CAS No: 63466-71-7.

E.2.11 Primary standard solutions.

E.2.11.1 Prepare a 100 mg/l HCB primary standard solution (E.2.9.1) in 2,2,4-trimethylpentane (E.2.4).

E.2.11.2 Prepare a primary standard solution ($\underline{E.2.9.2}$) containing the nine PCB congeners each at a concentration of 100 mg/l in 2,2,4-trimethylpentane ($\underline{E.2.4}$).

E.2.11.3 Prepare a 200 mg/l B[α]P primary standard solution (E.2.9.3) in 2,2,4-trimethylpentane (E.2.4).

E.2.12 Internal standard solutions.

E.2.12.1 HCB ¹³C₆.

Prepare a stock solution of internal standard (E.2.10.1) at 10 mg/l in 2,2,4-trimethylpentane (E.2.4).

E.2.12.2 PCB congener 101 ${}^{13}C_{12}$ and PCB congener 138 ${}^{13}C_{12}$.

Prepare a stock solution of each internal standard ($\underline{E.2.10.2}$) at 10 mg/l in 2,2,4-trimethylpentane ($\underline{E.2.4}$).

E.2.12.3 PCB congener 138 ¹³C₁₂.

Prepare a stock solution of each internal standard ($\underline{E.2.10.3}$) at 10 mg/l in 2,2,4-trimethylpentane ($\underline{E.2.4}$).

E.2.12.4 B[α]P d₁₂.

Prepare a stock solution of internal standard (E.2.10.4) at 1 mg/l in 2,2,4-trimethylpentane (E.2.4).

E.2.13 Calibration standards.

E.2.13.1 HCB and PCB congeners calibration standards.

Prepare six calibration solutions in the concentration range 0,02 mg/l to 1 mg/l by dilution of the primary standard HCB (E.2.11.1) and PCB mixed congener (E.2.11.2) standard solutions in 2,2,4-trimethylpentane (E.2.4). Each calibration solution shall also contain 0,5 mg/l of the HCB ¹³C₆ (E.2.12.1), 0,25 mg/l PCB congener 101 ¹³C₁₂ (E.2.12.2) and PCB congener 138 ¹³C₁₂ (E.2.12.3) internal standards.

E.2.13.2 B[α]P calibration standard.

Prepare six calibration solutions in the concentration range 0,005 mg/l to 0,02 mg/l by dilution of the primary $B[\alpha]P(\underline{E.2.11.3})$ standard solution in 2,2,4-trimethylpentane. Each calibration solution shall also contain 0,02 mg/l of the $B[\alpha]P d_{12}(\underline{E.2.12.4})$ internal standard.

E.2.14 Recovery solutions.

E.2.14.1 HCB recovery solution

Prepare a recovery solution containing 10 mg/l of HCB in 2,2,4-trimethylpentane (E.2.4).

E.2.14.2 Mixed PCB congener recovery solution

Prepare a recovery solution containing 1 mg/l of each polychlorinated biphenyl congener in 2,2,4-trimethylpentane ($\underline{E.2.4}$).

E.2.14.3 B[α]P recovery solution

Prepare a recovery solution containing 0,1 mg/l of $B[\alpha]P$ in 2,2,4-trimethylpentane (E.2.4).

E.3 Apparatus

Standard laboratory glassware and equipment and the following shall be used. Apparatus should be free from contamination before use. Glassware should be rinsed with acetone and then hexane before use and allowed to drain.

- **E.3.1 Amber coloured glass bottle** approximately 40 ml volume with tight-fitting screw cap.
- **E.3.2** Analytical balance, capable of weighing to 4 decimal places.
- **E.3.3** Glass microfibre thimble, 33 mm diameter x 100 mm.
- **E.3.4** Soxhlet extractor with siphon cup to hold a 33 mm diameter x 100 mm thimble.
- E.3.5 Water cooled condenser.
- E.3.6 250 ml round bottom flask.
- E.3.7 Spark proof heating mantle.
- **E.3.8** Sample concentration system with nitrogen gas stream.

E.3.9 Solid phase extraction column made from either glass or polypropylene, 25 mm to 30 mm internal diameter, 140 mm to 150 mm length, filled with about 20 g porous, granular "kieselguhr" SPE material (or commercial SPE column).

E.4 Instrumentation

E.4.1 A gas chromatograph-mass spectrometric system fitted with a capillary column and glasslined injector, capable of operating in electron impact mode with selected ion monitoring which permits different groups of ions to be monitored at selected time intervals during the analysis.

E.4.2 Analytical capillary column, for example HT-8, 50 m length x 0,22 mm ID x 0,25 mm film thickness 8 % phenyl polysiloxane-carborane or equivalent.

E.5 Sampling

The finger paint is mixed vigorously using a glass rod to ensure a homogeneous test portion can be sampled.

Finger paints are mainly water based and so an immediate test portion should be taken once a container has been opened.

It is important to take care when repeating sampling over time from a container as the composition of the test portion may vary through loss of constituents to the atmosphere.

E.6 Procedure

E.6.1 General

The sample preparation is the same for all analytes using the solvent and solid phase extraction stages. However, to achieve the lower limits specified for $B[\alpha]P$ the concentration stage has been separately described to HCB and PCB congeners.

E.6.2 Sample preparation

A screw cap amber bottle (E.3.1) is filled with approximately 6 g of anhydrous sodium sulfate (E.2.8). Weigh accurately $(1,0 \pm 0,1)$ g of the test portion onto the surface of the anhydrous sodium sulfate and record the weight (M). Add an additional 6g of anhydrous sodium sulfate to cover the test portion and tightly close the screw cap.

Shake the bottle vigorously for (60 ± 5) s to mix the test portion and sodium sulfate. Remove the cap and allow the mixture to stand for 24 h ± 1 h under standard laboratory conditions ensuring the mixture will not come into contact with any possible contaminants.

After 24 h, replace the screw cap onto the amber bottle and shake vigorously again for a further (60 ± 5) s.

The mixture should consist of particles no larger than 1 mm to 5 mm, where larger particles have formed a glass rod can be used to break up the larger particles.

E.6.3 Solvent extraction of soluble HCB, PCBs and $B[\alpha]P$

E.6.3.1 Solvent extraction of soluble HCB and PCBs

Transfer the mixture in <u>E.6.2</u> into a glass microfibre thimble (<u>E.3.3</u>) and add a filter paper disc to the top of the thimble. Insert the thimble into a soxhlet extractor (<u>E.3.4</u>) and connect to a water cooled condenser (<u>E.3.5</u>). Add approximately 175 ml of cyclohexane/acetone (<u>E.2.6</u>) into a 250 ml round

bottom flask (E.3.6) and connect to the soxhlet extractor, place on a heating mantle (E.3.7) and reflux gently for > 6 h.

Allow sufficient time for the cyclohexane/acetone to cool before disconnecting the soxhlet extractor and gently evaporate the cyclohexane/acetone extract to approximately 5-10 ml using a rotary evaporator or equivalent sample concentration system ($\underline{E.3.8}$).

Transfer the cyclohexane/acetone extract into a graduated glass tube washing with 2×3 ml cyclohexane and evaporate the extract to approximately 3 ml under a gentle stream of nitrogen (E.3.8).

E.6.3.2 Solvent extraction of soluble B[α]P

Transfer the mixture in <u>E.6.2</u> into a glass microfibre thimble (<u>E.3.3</u>) and add a filter paper disc to the top of the thimble. Insert the thimble into a soxhlet extractor (<u>E.3.4</u>) and connect to a water cooled condenser (<u>E.3.5</u>). Add approximately 200 ml of toluene/acetone (<u>E.2.7</u>) into a 250 ml round bottom flask (<u>E.3.6</u>) and connect to the soxhlet extractor, place on a heating mantle (<u>E.3.7</u>) and reflux gently for > 6 h.

Allow sufficient time for the toluene/acetone to cool before disconnecting the soxhlet extractor and gently evaporate the toluene/acetone extract to approximately 3 ml using a rotary evaporator or equivalent sample concentration system ($\underline{\text{E.3.8}}$).

Transfer the toluene/acetone extract into a graduated glass tube washing with 1 ml toluene and evaporate the extract to approximately 3ml under a gentle stream of nitrogen ($\underline{E.3.8}$).

E.6.4 Solid phase extraction

E.6.4.1 Solid phase extraction of HCB and PCBs

Transfer the extract obtained in E.6.3 onto a column containing kieselguhr (E.3.9) and leave to stand for approximately 1 h. Then wash the column with 3×5 ml portions of cyclohexane (E.2.2) collecting the eluent into a suitable glass vessel. To the glass vessel and eluent add approximately 6 ml of 2,2,4-trimethylpentane (E.2.4).

E.6.4.2 Solid phase extraction of $B[\alpha]P$

Transfer the extract obtained in <u>E.6.3.2</u> onto a column containing kieselguhr (<u>E.3.9</u>) and leave to stand for approximately 1 h. Then wash the column with 3×5 ml portions of toluene (<u>E.2.5</u>) collecting the eluent into a suitable glass vessel.

E.6.5 Sample concentration for determining HCB and PCB congeners

Evaporate the eluent obtained in E.6.4 to approximately 3 ml using the sample concentrator (E.3.8) and quantitatively transfer into a graduated test tube and fill to the 6 ml mark with 2,2,4-trimethylpentane. Transfer 1 ml to a sample vial and add 0,025 ml of the HCB internal standard solution (E.2.12.1) and 0,05 ml of each PCB internal standard solutions (E.2.12.2 and E.2.12.3) for quantitative determination by GC-MS.

E.6.6 Sample concentration for determining $B[\alpha]P$

Evaporate the eluent obtained in E.6.4 to approximately 3 ml using the sample concentrator (E.3.8) and quantitatively transfer into a graduated test tube and fill to the 4 ml mark with 2,2,4-trimethylpentane. Transfer 1 ml to a sample vial and add 0,05 ml of the $B[\alpha]P$ internal standard solution (E.2.12.4) for quantitative determination by GC-MS.

E.6.7 Gas chromatography conditions

Set up the gas chromatography-mass spectrometer detection system according to manufacturer's instructions, to monitor the selected mass fragmentation ions for HCB, PCB congeners, and $B[\alpha]P$.

The following conditions have been shown to be suitable.

Capillary column	HT-8 or equivalent type, length: 50 m, internal diameter: 0,25 mm, film thickness: 0,22 μm
Injector	split/splitless
Injection temperature	220 °C
Carrier	Helium
Injection volumes	1,0 μl, split 1:15
Detection	Mass spectrometry
Temp. programme for HCB and PCB congeners	60 °C (hold 2 min), 60 °C to 170 °C (3,5 °C/min), 300 °C (12 min)
Temp. Programme for $B[\alpha]P$	60 °C (hold 1 min), 60 °C to 170 °C (30 °C/min), (hold 1 min), 170 to 300 °C (20-30 °C/min), (hold 25 min)

E.6.8 Mass spectrometry

A single quadrupole MS instrument is recommended with ionization by electronic impact at 70 eV.

E.6.9 SIM mode

E.6.9.1 General

In SIM mode, the fragment ions allow quantification by using one of the three ions as the target quantification ion and the remaining two ions as qualifiers identified in <u>Tables E.1</u> and <u>E.2</u>.

NOTE T1 is considered as the target ion for quantification.

The time spent on each ion (dwell time) shall be the same for all ions within a given window. The m/z values are rounded. Exact values should be used as SIM parameters.

Component	Target ion (m/z)	Qualifier 1 (m/z)	Qualifier 2 (m/z)
НСВ	284	249	286
PCB 11	222	224	152
PCB 28	256	258	186
PCB 52	292	290	294
PCB 101	326	328	324
PCB-118	326	328	324
PCB-153	360	362	290
PCB 138	360	362	290
PCB 180	396	394	324
PCB 209	498	500	496
HCB ¹³ C ₆	294		
PCB 101 ¹³ C ₁₂	338		
PCB 138 ¹³ C ₁₂	372		

Component	Target ion (m/z)	Qualifier 1 (m/z)	Qualifier 2 (m/z)
Β(α)Ρ	255	250	253
B(α) d12	264		

Table E.2 — List of ions for quantification

E.6.9.2 Maximum permitted tolerances

The relative intensities of the ion for quantification against respectively the two qualifiers, expressed as a percentage of the intensity of the most intense ion, shall correspond to those of the calibration standard solutions, at comparable concentrations, measured under the same conditions, within the tolerances described <u>Table E.3</u>.

The calibration standard used as reference should be at the middle of the calibration curve.

Table E.3 — Maximum permitted tolerances for relative ion intensities

Relative intensity	Relative range of the response
% of base ion intensity	
> 50 %	±10 %
> 20 % - 50 %	±15 %
> 10 % - 20 %	±20 %
≤ 10 %	±50 %

Figure E.1 shows an example of chromatographic separation of HCB and 9 PCB Congeners.

Figure E.1 — Example of chromatographic separation of HCB and 9 PCB Congeners

Table E.4 shows a key to retention time for HCB and 9 PCB Congeners.

Component	Key retention time	
	(min)	
НСВ	19,65	
PCB 11	20,76	
PCB 28	23,57	
PCB 52	25,03	
PCB 101	30,14	
PCB 118	34,43	
PCB 153	35,28	
PCB 138	36,98	
PCB 180	40,87	
PCB 209	49,00	

Table E.4 — Key to retention time for HCB and 9 PCB Congeners

Figure E.2 shows an example of chromatographic separation of $B[\alpha]P$ and $B[\alpha]P$ d12.

ISO 8124-7:2015(E)

Figure E.2 — Example of chromatographic separation of $B[\alpha]P$ and $B[\alpha]P$ d12

<u>Table E.5</u> shows a key to retention time for $benzo[\alpha]$ pyrene and $benzo[\alpha]$ pyrene d12.

Fable E.5 — Ke	y to retention time f	or benzo[α]pyrene	and benz	o[α]pyrene d	112

Component	Key retention time min
Β[α]Ρ	31,86
B[α]P d12	31,56

E.6.9.3 Verification of analytical system

To check the analytical procedure for HCB, add 0,5 ml of a recovery solution (<u>E.2.14.1</u>) onto the sodium sulfate described in <u>E.2.8</u> and follow the procedure <u>E.6.2</u> to <u>E.6.4</u>.

To check the analytical procedure for PCB congeners, add 0,3 ml of a recovery solution (E.2.14.2) onto the sodium sulfate described in E.2.8 and follow the procedure E.6.2 to E.6.4.

The recovery rate of the hexachlorobenzene and the PCB congeners should be at least 70 %.

To check the analytical procedure for $B[\alpha]P$, add 0,2 ml of a recovery solution (E.2.14.3) onto the sodium sulfate described in E.2.8 and follow the procedure E.6.2 to E.6.4.

The recovery rate of $B[\alpha]P$ shall be at least 70 %.

E.7 Calculation

E.7.1 For HCB, PCB congeners and $B[\alpha]P$ determination, the internal standard calibration method is used. An *R* value is determined, which is the ratio between the intensity from the ion used for quantification and the internal standard ion. Prepare a calibration curve by plotting the concentration of HCB, PCB and $B[\alpha]P$ calibration solutions against the corresponding *R* value. Determine the concentration *C* of each analyte in mg/l in the sample solution directly from the calibration curve.

E.7.2 The concentration of PCBs in the original sample at each level of chlorination is given by:

$$C_{LC} = \frac{C}{M} \cdot Vmgkg^{-1}$$
(E.1)

where

- C_{LC} is the concentration of PCB congeners at each level of chlorination (where n is 1 to 7) in the sample, in mg/kg;
- *M* is the mass of sample extracted, in g;
- *V* is the volume of sample solution, in ml;
- *C* is the concentration PCB congener in sample solution, in mg/l.

$$C_{Total} = \sum_{1}^{7} C_{Lc} \tag{E.2}$$

where

*C*_{Total} is the concentration of all PCB congeners determined in the original sample, in mg/kg;

- C_{LC} is the concentration of PCB congeners at each level of chlorination (where n is 1 to 7) in the sample, in mg/kg.
- **E.7.3** The concentration of HCB in the original sample is given by:

$$C_{HCB} = \frac{C}{M} \cdot Vmgkg^{-1}$$
(E.3)

where

C_{HCB} is the concentration of HCB in the original sample, in mg/kg;

- *M* is the mass of sample extracted, in g;
- *V* is the volume of sample solution, in ml;
- *C* is the concentration HCB in sample solution, in mg/l.

E.7.4 The concentration of $B[\alpha]P$ in the original sample is given by:

$$C_{B[\alpha]P} = \frac{C}{M} \cdot Vmgkg^{-1}$$
(E.4)

where

 $C_{B[\alpha]P}$ is the concentration of $B[\alpha]P$ in the original sample, in mg/kg;

M is the mass of sample extracted, in g;

V is the volume of sample solution, in ml;

C is the concentration $B[\alpha]P$ in sample solution, in $\mu g/ml$.

The B[α]P concentration is calculated from the area of the B[α]P peak and is given as mass portion *w*, in mg/kg, of B[α]P in test material according to Formula (E.5):

$$w = \frac{A_S \cdot C_C \cdot V_S}{A_C \cdot E_S} \tag{E.5}$$

where

w is the mass portion of single amine component in test material, in mg/kg;

A_S is the peak area of the amine in the sample solution, in area units;

A_C is the peak area of the amine in the calibration solution, in area units;

 C_C is the concentration of the amine in the calibration solution (μ g/ml);

 V_S is the volume of test solution obtained in <u>C.6.4</u> used for chromatographic analysis, in ml;

E_S is the initial mass of sample in the end volume, in g.

If an internal standard has been used, the mass portion of amine component (w) is given as:

$$w = \frac{A_{IS(S)}}{A_{IS(C)}} \tag{E.6}$$

where

w is the mass portion of $B[\alpha]P$;

- $A_{IS(S)}$ the peak area of the internal standard in the sample solution in area units;
- $A_{IS(C)}$ is the peak area of the internal standard in the calibration solution in area units.

E.8 Precision

E.8.1 Linearity

The correlation coefficient shall be > 0.990 Licensed to: Tstsullina, Antonina Mrs Downloaded: 2020-12-21 Single user licence only, copying and networking prohibited © ISO 2015 – All rights reserved

E.8.2 Limits of detection (LOD) and quantification (LOQ)

The LODs and the LOQs for the method using GC-MS are shown in Table E.6.

Component	LOD	LOQ
	mg/l	mg/kg
НСВ	0,003	0,04
PCB-28	0,005	0,07
PCB-52	0,005	0,07
PCB-101	0,005	0,07
PCB-118	0,005	0,07
PCB-138	0,005	0,07
PCB-153	0,005	0,07
PCB-180	0,005	0,07
Β[α]Ρ	0,002	0,05

Table E.6 — Limits of detection (LOD) and quantification (LOQ) using GC-MS

E.8.3 Repeatability and reproducibility data for HCB, PCB congeners and B[α]P

HCB, PCB congeners and $B[\alpha]P$ was determined in a single batch of finger paint spiked at the concentration limits of 5 mg/kg for HCB, 2 mg/kg for the sum of seven PCB congeners (0,29 mg/kg individual PCB congener) and 0,05 mg/kg for $B[\alpha]P$ using six replicate samples by two independent laboratories using GC-MS and shown in Table E.7.

Component	Conc	Lab 1	Lab 2
	mg/kg	mg/kg	mg/kg
НСВ	5,00	3,40 ± 0,25	4.09 ± 0,13
(1) PCB-28	0,29	$0,27 \pm 0,01$	0,22 ± 0,01
(2) PCB-52	0,29	0,25 ± 0,01	$0,24 \pm 0,01$
(3) PCB-101	0,29	0,26 ± 0,01	0,26 ± 0,01
(4) PCB-118	0,29	0,28 ± 0,01	0,29 ± 0,01
(5) PCB-138	0,29	$0,27 \pm 0,01$	0,26 ± 0,01
(6) PCB-153	0,29	0,26 ± 0,01	0,28 ± 0,01
(7) PCB 180	0,29	0,27 ± 0,01	0,36 ± 0,01
Sum of PCBs (1–7)	2,00	1,85 ± 0,07	1,91 ± 0,07
Β[α]Ρ	0,050	0,037 ± 0,002	0,039 ± 0,001

Table E.7 — Repeatability and reproducibility data for HCB, PCB and $B[\alpha]P$

NOTE The repeatability data are a good indicator of the performance of the method within a laboratory. Although comparable values were obtained in the two laboratories, for reproducibility values this will require further verification.

E.8.4 Recovery

Recovery was determined in a single batch of finger paint spiked at the concentration limits of 5 mg/kg for HCB, 2 mg/kg for the sum of seven PCB congeners (0,28 mg/kg individual PCB congener) and 0,05 mg/kg for B[α]P using six replicate samples by two independent laboratories using GC-MS and shown in Table E.8.

Component	% Recovery	
	(Average of Lab 1 and 2)	
НСВ	75	
(1) PCB-28	86	
(2) PCB-52	84	
(3) PCB-101	89	
(4) PCB-118	97	
(5) PCB-138	91	
(6) PCB-153	94	
(7) PCB 180	108	
(1–7) Sum of PCB Congeners	94	
Β[α]Ρ	77	

Table E.8 — Recovery of HCB, PCB and $B[\alpha]P$

E.9 Report

Any report of analysis shall refer to this method and include:

- a) precise sample description/identification/article number;
- b) type and date of sampling;
- c) date of submission and date of analysis;
- d) data on procedure (separation and detection);
- e) data on quantification procedure;
- f) calculated results;
- g) measurement of uncertainty (where relevant).

E.10 Additional information

There are 209 congeners of polychlorinated biphenyls (PCB) possible but there is no information in the literature regarding the levels and the congeners likely to be present in finger paints. There is also little published data on the materials used in their formulations; that available for organic pigments suggests that the manufacturing conditions have a strong influence on the PCBs which may inadvertently be present. The method allows for the quantification of any of the potential congeners, by including, as far as possible, one member of each congener family as calibration standards. (see <u>E.2.9.2</u>). <u>Table E.9</u> shows all other PCB-homologues.

PCB No	Structure	PCB No	Structure
Monochlorobiphenyls		47	2,2',4,4'
1	2	48	2,2',4,5
2	3	49	2,2',4,5'
3	4	50	2,2',4,6
Dichlorobiphenyls		51	2,2',4,6'

Table E.9 — Nomenclature of PCB-homologues according to IUPAC^[18]

PCB No	Structure	PCB No	Structure
4	2,2'	52	2,2',5,5'
5	2,3	53	2,2',5,6'
6	2,3'	54	2,2',6,6'
7	2,4	55	2,3,3',4
8	2,4'	56	2,3,3',4'
9	2,5	57	2,3,3',5
10	2,6	58	2,3,3',5'
11	3,3'	59	2,3,3',6
12	3,4	60	2,3,4,4'
13	3,4'	61	2,3,4,5
14	3,5	62	2,3,4,6
15	4,4'	63	2,3,4',5
Trichloro	biphenyls	64	2,3,4',6
16	2,2',3	65	2,3,5,6
17	2,2',4	66	2,3',4,4'
18	2,2',5	67	2,3',4,5
19	2,2',6	68	2,3',4,5'
20	2,3,3'	69	2,3',4,6
21	2,3,4	70	2,3',4',5
22	2,3,4'	71	2,3,4',6
23	2,3,5	72	2,3',5,5'
24	2,3,6	73	2,3',5',6
25	2,3',4	74	2,4,4',5
26	2,3',5	75	2,4,4',6
27	2,3',6	76	2',3,4,5
28	2,4,4'	77	3,3',4,4'
29	2,4,5	78	3,3',4,5
30	2,4,6	79	3,3',4,5'
31	2,4',5	80	3,3',5,5'
32	2,4',6	81	3,4,4',5
33	2',3,4	Pentachlorobiphenyls	
34	2',3,5	82	2,2',3,3',4
35	3,3',4	83	2,2',3,3',5
36	3,3',5	84	2,2',3,3',6
37	3,4,4'	85	2,2',3,4,4'
38	3,4,5	86	2,2',3,4,5
39	3,4',5	87	2,2',3,4,5'
Tetrachlorobiphenyls		88	2,2',3,4,6
40	2,2',3,3'	89	2,2',3,4,6'
41	2,2',3,4	90	2,2',3,4',5
42	2,2',3,4' Licenseo'to', Psitsulina, Ar	tonina Mrs 91	2,2',3,4',6

Table E.9 (continued)

Downloaded: 2020-12-21

Single user licence only, copying and networking prohibited © ISO 2015 – All rights reserved

PCB No	Structure	PCB No	Structure
43	2,2',3,5	92	2,2',3,5,5'
44	2,2,3,5'	93	2,2',3,5,6
45	2,2',3,6	94	2,2',3,5,6'
46	2,2',3,6'	95	2,2',3,5',6
Pentachloro	obiphenyls	154	2,2',4,4,5,6'
96	2,2',3,6,6'	155	2,2',4,4',6,6'
97	2,2',3',4,5	156	2,3,3',4,4',5
98	2,2',3,4,6	157	2,3,3',4,4',5'
99	2,2',4,4',5	158	2,3,3',4,4',6
100	2,2',4,4',6	159	2,3,3',4,5,5'
101	2,2',4,5,5'	160	2,3,4',4,5,6
102	2,2',4,5,6'	161	2,3,3',4,5',6
103	2,2',4,5',6	162	2,3,3',4',5,5'
104	2,2',4,6,6'	163	2,3,3',4',5,6
105	2,3,3',4,4'	164	2,3,3',4',5',6
106	2,3,3',4,5	165	2,3,3',5,5',6
107	2,3,3',4',5	166	2,3,4,4',5,6
108	2,3,3',4,5'	167	2,3',4,4',5,5'
109	2,3,3',4,6	168	2,3',4,4',5',6
110	2,3,3',4',6	169	3,3',4,4',5,5'
111	2,3,3',5,5'	Heptachlorobiphenyl	
112	2,3,3',5,6	170	2,2',3,3',4,4',5
113	2,3,3',5',6	171	2,2',3,3',4,4',6
114	2,3,4,4',5	172	2,2',3,3',4,5,5'
115	2,3,4,4',6	173	2,2',3,3',4,5,6
116	2,3,4,5,6	174	2,2',3,3',4,5,6'
117	2,3,4',5,6	175	2,2',3,3',4,5',6
118	2,3',4,4',5	176	2,2',3,3',4,6,6'
119	2,3,4,4',6	177	2,2',3,3',4',5,6
120	2,3',4,5,5'	178	2,2',3,3',5,5',6
121	2,3',4,5',6	179	2,2',3,3',5,6,6'
122	2',3,3',4,5	180	2,2',3,4,4',5,5'
123	2',3,4,4',5	181	2,2',3,4,4',5,6
124	2',3,4,5,5'	182	2,2',3,4,4',5,6'
125	2',3,4,5,6'	183	2,2',3,4,4',5',6
126	3,3',4,4',5	184	2,2',3,4,4',6,6'
127	3,3',4,5,5'	185	2,2',3,4,5,5',6
Hexachlorobiphenyls		186	2,2',3,4,5,6,6'
128	2,2',3,3',4,4'	187	2,2',3,4',5,5',6
129	2,2',3,3',4,5	188	2,2',3,4',5,6,6'
130 Licent	sed to: Tsilsilina' Antonina Mr	189	2,3,3',4,4',5,5'

Table E.9 (continued)

Downloaded: 2020-12-21

© ISO 2015 – All rights reserved

PCB No	Structure	PCB No	Structure	
131	2,2',3,3',4,6	190	2,3,3',4,4',5,6	
132	2,2',3,3',4,6'	191	2,3,3',4,4',5',6	
133	2,2',3,3',5,5'	192	2,3,3',4,5,5',6	
134	2,2',3,3',5,6	193	2,3,3',4',5,5',6	
135	2,2',3,3',5,6'	Octachlor	Octachlorobiphenyls	
136	2,2',3,3',6,6'	194	2,2',3,3',4,4',5,5'	
137	2,2',3,4,4',5	195	2,2',3,3',4,4',5,6	
138	2,2,3,4,4',5'	196	2,2',3,3',4,4',5',6	
139	2,2',3,4,4',6	197	2,2',3,3',4,4',6,6'	
140	2,2',3,4,4',6'	198	2,2',3,3',4,5,5',6	
141	2,2',3,4,5,5'	199	2,2,3,3',4',5,5',6	
142	2,2',3,4,5,6	200	2,2',3,3',4,5,6,6'	
143	2,2',3,4,5,6'	201	2,2',3,3',4,5',6,6'	
144	2,2',3,4,5',6	202	2,2',3,3',5,5',6,6'	
145	2,2',3,4,6,6'	203	2,2',3,4,4',5,5',6	
146	2,2',3,4',5,5'	204	2,2',3,4,4',5,6,6'	
147	2,2',3,4',5,6	205	2,3,3',4,4',5,5',6'	
148	2,2',3,4,5,6'	Nonachlorobiphenyls		
149	2,2',3,4',5'6	206	2,2',3,3',4,4',5,5',6	
150	2,2',3,4',6,6'	207	2,2',3,3',4,4',5,6,6'	
151	2,2',3,5,5',6	208	2,2',3,3',4,5,5',6,6'	
152	2,2',3,5,6,6	Decachlorobiphenyl		
153	2,2',4,4',5,5'	209	2,2',3,3',4,4',5,5',6,6'	

Table E.9 (continued)

Annex F (informative)

Ingredients used in the manufacture of finger paints

In accordance with current knowledge the following ingredients are used:

- a) Binding agents:
- carboxymethylcellulose and its salts;
- dextrins;
- polyvinyl alcohol;
- cellulose ethers;
- starch;
- tragacanth;
- xanthan;
- polyvinylpyrolidone;
- casein;
- alginates;
- polyacrylates.
- b) Extenders:
- calcium carbonates (including whitening);
- calcium sulfate;
- silicon dioxide;
- magnesium oxide;
- aluminium oxide;
- magnesium silicate;
- calcium silicate;
- kaolin (china clay);
- bentonite;
- barium sulfate, magnesium carbonate, aluminium trihydrate (appropriate quality to meet toy
 migration limits for aluminium), talc.
- c) Humectants:
- sodium polyphosphate;
- fatty alcohol ethoxylates;

ISO 8124-7:2015(E)

- polyalkylene glycol ethers;
- fatty acid taurid- sodium salt;
- glycerols;
- polyglycols;
- propylene glycol;
- capillaire syrup (commercial blends of soluble saccharides), provided they do not impart sweetness.
- d) Surfactants:
- sodium salts of edible fatty acids;
- polyalkylene glycol ethers;
- polywaxes.

Annex G (informative)

Labelling guidelines and manufacturer's markings

G.1 General

This annex provides guidance on the labelling of finger paints. All markings should be visible and easily legible by the consumer and should resist normal use conditions.

G.2 Primary packaging

G.2.1 General

The primary packaging should bear the following information.

NOTE Primary packaging has the same meaning as consumer packaging or outer packaging or retail packaging.

G.2.2 Manufacturer's identification

The primary packaging should bear the name and address of the manufacturer, importer or the distributor, or with a trademark and/or mark which clearly identifies the manufacturer, importer or distributor.

G.2.3 Labelling phrases

G.2.3.1 Warnings

The primary packaging should carry the following warning:

"Warning! Children under 3 years of age should be supervised by adults."

Finger paints supplied in powder form should additionally bear the following warning:

"Warning! Mix with water in accordance with the instructions before giving to a child. Avoid inhalation of the powder."

G.2.3.2 Indication of preservative(s) and embittering agent(s)

The primary packaging should be labelled with an indication of the preservative(s) and embittering agent(s) used.

Preservatives should be identified by their chemical name, INCI (name) or E-number, where available.

G.3 Container

The container of the finger paint should repeat the manufacturer's identification, as given in <u>G.2.2</u>.

The container should bear a type, batch, serial or model number or other information allowing their identification, or, where the size or nature of the container does not allow it, that the required information is provided on the primary packaging or in documentation accompanying the toy.

If the container is also the primary packaging all information under $\underline{G.2}$ should also be given on the container.

G.4 Instructions

Finger paints supplied in powder form should bear instructions that indicate how to mix with water and in particular, the correct ratio of water to powder. Additionally there should be information to avoid inhalation of the powder.

The instructions may optionally provide information about the correct use of finger paints and precautions to be taken in order to minimize staining.

Bibliography

- [1] EN 71-7:2014, Safety of toys Part 7: Finger paints Requirements and test methods
- [2] EN 71-12:2013, Safety of toys Part 12: N-Nitrosamines and N-nitrosatable substances
- [3] ISO 4618:2014, Paints and varnishes Terms and definitions
- [4] UNITED NATIONS GLOBALLY HARMONISED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS (GHS). DOCUMENT ST/SG/AC.10/30/Rev.5 ISBN No. 978-92-1-117067-2 <u>http://www.unece.org/trans/danger/publi/ghs/ghs_rev05/05files_c.html</u>
- [5] European Parliament and Council Directive 94/34/EC of 30 June 1994 amending Directive 89/107/EEC on the approximation of the laws of Member States concerning food additives authorised for use in foodstuffs intended for human consumption
- [6] European Parliament and Council Directive 95/2/EC of 20 February 1995 concerning food additives other than colouring matters and sweeteners
- [7] Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products
- [8] Second Commission Directive 82/434/EEC of 14 May 1982 on the approximation of the Laws of the Member States relating to methods of analysis necessary for checking the composition of cosmetic products
- [9] Third Commission Directive 83/514/EEC of 27 September 1983 on the approximation of the laws of the Member States relating to methods of analysis necessary for checking the composition of cosmetic products
- [10] Fourth Commission Directive 85/490/EEC of 11 October 1985 on the approximation of the laws of the Member States relating to methods of analysis necessary for checking the composition of cosmetic products
- [11] Commission Directive 90/207/EEC of 4 April 1990 amending the second Directive 82/434/EEC on the approximation of the laws of the Member States relating to methods of analysis necessary for checking the composition of cosmetic products
- [12] Fifth Commission Directive 93/73/EEC of 9 September 1993 on the methods of analysis necessary for checking the composition of cosmetic products
- [13] Sixth Commission Directive 95/32/EC of 7 July 1995 on the methods of analysis necessary for checking the composition of cosmetic products
- [14] Seventh Commission Directive 96/45/EC of 2 July 1996 on the methods of analysis necessary for checking the composition of cosmetic products
- [15] BALLSCHMITER K., & ZELL M. Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Fresenius Z. Anal. Chem. 1980, **302** pp. 20–31
- [16] Analytical method No. 212: Determination of unsulphonated primary aromatic amines in pigments and in solvent soluble dyestuffs intended for use in food packaging; Ecological and Toxicological Association of the Dyestuffs Manufacturing Industry (ETAD)
- [17] HPLC Method for the determination of aromatic amines released from water-colours under physiological conditions. Mitt. Gebiete Lebensm. Hyg. 1997, **88** pp. 305–320
- [18] SCHNEIDER G. Dtsch. Lebensmitt. Rundsch. 1997, 93 pp. 69–74

- [19] Deutsche Forschungsgemeinschaft. MAK- und BAT-Werte-Liste 1995; Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe, Mitteilung 31, Abschnitt IIIA, VCH-Verlagsgesellschaft, Weinheim
- [20] Official collection of analytical procedure acc. § 64 LFGB (Human and Animal food Consolidated Legislation, Germany), No. B82.02-4, January 1998; Detection of the application of certain azo dyes from polyester fibres
- [21] Official collection of analytical procedure acc. § 64 LFGB (Human and Animal food Consolidated Legislation, Germany), No. B82.02-4, Proof of application of certain Azo Dyes in consumer goods

Licensed to: Tsitsulina, Antonina Mrs Downloaded: 2020-12-21 Single user licence only, copying and networking prohibited ISO 8124-7:2015(E)

ICS 97.200.50

Price based on 54 pages

Licensed to: Tsitsulina, Antonina Mrs Downloaded: 2020-12-21 Single user licence only, copying and networking prohibited